ArchiMate® Cookbook

Document information

Version 1.0
Created 2019-07-20
Modified 2022-08-05

Author Eero Hosiaisluoma

ArchiMate® Cookbook
Patterns & Examples

Table Of Contents

R 1 0T [o o o SRR 4
1.0 PUIPOSE ANGO SCOPEeteeieieeeiiitieiet e e e ettt e e e e e e et bttt et e e e s e aa s be e et e ae e e e ab e eeeeeeeeaaabebeeeeae e e e aanbbeeeeeeeesanbbbaeeeaasaaannbnnnaaaenas 4
R L (=T =T g ot PP P PR PPRPPR 4

2. ArChiMate® DIAGIAmM TYPES .. .uveiieiitieieeiiteee ittt e sttt e e ettt e e e sttt e e e s be e e e sk bt e e e sabe e e e et bt e e e aabe e e e aabb e e e e aabeeeesbbeeeeabbeeeesnbaeeenae 5
2.1 MOtIVatiON VIEW (GOAIS VIBW)eeiiiiieiiititit ettt ettt e e e ookttt e e e e e e o bbbt e e e e e e s nbbbe et e e e e s e ansbe e e e e e e e eaanbnneeaaeaas 5

2.1.1 MOtiVatioN VIEW = EXAMIPIEeeieeiieeis it e e ettt e e s st e e e e s st e e e e e e s st ate e e e e e s s snsebeeeeaeessanstaaeeeeeesanrnnnes 6
2.1.2 RISK ANGIYSIS VIBW ... ittt ettt ettt ekt e e ottt e e bt e e ek b et e e aa kb et e e sabe e e e abb e e e e aabeeeeanbneeeeaes 7
2.2 BUSINESS MOAEI VIBW ...ttt ettt e ket e e s e e et e e e b e e e e s et e s e an e e e s e e e e ennns 8
2.2.1 BUSINESS MOl CaANVAS (BMEC)....ccciuiiiiiiiiiie ittt ettt ettt ettt et ettt e et e e s bb e e e sab e e e snbe e e e e sabeeeeabneeeees 8
2.2.2 SWOT ANAIYSIS VIBWceiieiiiitieiee ettt oottt e e e oottt et e e e e e o e bbb et e e e e e s e s bbbt e e e e e s e aannbe e e e e e e e sannbeneeaaeesannbnneeas 8
2.2.3VAIUE SIFEAIM VIBW ...ttt ettt ettt ettt ekttt et e bt et e e ket e sh b e e sh et e eh bt e sa b e e aa b et e ahe e e ssb e e nsneesnneeenbeeenneeenes 9
2.2.4 Strategy & Capability VIBWcouuiieiiiiie ettt et et e e e s bt e e s aba e e ab e aane s 11
2.2.5 Implementation ROAAMEP VIBW.....coi ittt e e e ettt e e e e e s bt e et e e e e e e nabee e e e e e e e annnnnees 14
P2 = Y= =T BV = SR 16
2.3.1 Layered View - Business- and Application Layers EXample ... 17
2.3.2 Layered VIEW - BUSINESS LAYETcccciuiiieiie ittt e e ettt e e e e sttt e e e e e s e s tnta e e e e e e s sanba e e e e e e e s nntnaaeeeeeasnnnnneees 17
2.3.3 Layered View - CUSIOMEN SEIVICE JOUIMEBYetiiiueiieiiieeeaiieeeeasteeeeasateeeesteeeessssseeessseeessnsaeeesnseeesannneess 18
2.3.4 Layered View - SWIMINE PrOCESS VIEWcciiiiiiiiiiiie ittt e e 19
2.3.5 Layered VIeW - SEIVICE DESION VIBWuuiieiiiiiiiiiiiee e s iiieiee et e s s ssttteeeaeesasanbeseaeaesssntaaeeaaessanstnsneeeessannsnseees 19
2.3.6 Layered VIew - SErviCe BIUBPIINToiiiiiiie ittt e et e e e e s nannee s 21
2.4 Interaction VIeW (CO-0PEIAtION VIBW)uuiiiiiiieiiiitiee ettt e e e e e et e e e e e e et e be e e e e e s s s bbbe e e e e e e s ansbeeeeeaeseaanbareees 22
2.4.1 Actor Interaction (CO-OPEratioN) VIEWccciiiiuiiiiieeesiiiiiieeeeeessstsieeeaeesssasteeeeeeesssntaeeeeaessasssnsneeeessansnseees 22
2.4.2 Process Interaction (CO-0PEration) VIBW.ouuuiiiiueeieiiiiee ettt e sttt ettt et e e s stbe e e sbbe e e s sabne e e sbreeesannneeas 23
2.4.3 Application Interaction (CO-0PEratioN) VIBWciiiiiiiiiiiiieee ettt e e et e e e e e e e e s e sbere e e e e e s e nneeeeas 23
2.5 BUSINESS PrOCESS VIBWeeiiiieiiiiiieitte e e essteieeet e e e e s sttt e e ae e e s teteeeeeeesaasstaaeeeeeesansteteeeeeeaaanssteneeaeesannssnneeeaeesannsnnnnes 23
2.5.1 Business Process Functional DeCoOmMpPOSItION VIEWueiiiiiiiiiiiiiiie e e e e e e e 24
2.6 Conceptual Data MOUEI VIBW.........uuiiieeiiiiiiieie e e sttt e e st e e e s s s e e e e e s e te e e e e e e s aassbaeaeaeesasastaaeeeaeesannsnnnees 25
P2 A - = 1, o To 1= IRV SR 25
2.8 Technology Platform View (INfraStrUuCLUIE VIEW)cooiiiiiiiiiiiiie ettt e e e e s nbeee s 26
2.9 Application Structure View (Solution ArChIitECIUIrE VIEW)uuiiieiiiiiiiiie ettt e e e e e e e e e 27
2.9.1 Application Design Pattern (BasiC MOEI)eiiiiiiiiiiiiiie it 27
2.9.2 Application Logical Structure View (Application Structure / Internal Structure)cccccovveiieeeeeinniinneen. 28
pZ2 S G 0o Ta g1 oL g 1=T 1 a1/ oo 1= I (@ 1Y R 29
R A BT = o - T PSR 30
RS R AN o] o] [To=a Lo a TN) (=T ir= L To] o1 SR 32
2.9.6 SEQUENCE DIAGIAIMS ... eeiiiiiiiieeitete ettt ettt e s stb et e e s be e e s bee e e e sabe e e e abe et e e ahb e e e e aabe et e e bbe e e e sabbeeeeasbaeeesnbbeeesanneeas 33
2.9.7 Application INtegration PatterNS.uiiiiie ettt e e e e e e e e e e e e s nbe s e e e e e e e e annnreeas 35
2.9.8 USE CBSE VIBW ...eeiiiiiiiiiieiee ettt etttk s et st e et e bt e e bt e s ket e e b et e se et e R et e nRn e e ne e e nn e e nn e e nr e e 36

3. ArchiMate® -ElEMENES (SUDSEL)ciiiiiiieiiiiie ittt ettt e aa bt e e ek e e s nbb e e e enb e e e e nbeeeeenens 38
3.1 ArchiMate® MOotivation -EIEMENTSueiiiiiii et e s sre e e e snreee e 39
3.2 ArchiMate® Strategy -EIEMENLSoooi i e e e e e s s s e e e e e s snnrn e e e e e e nnnrnreees 40

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

3.3 ArchiMate® BUSINESS LAYEr -EIEMENLScouiiiiiiiiie ittt e e st e e et e e e s nnneee e e 41
3.4 ArchiMate® Application Layer -EIEMENLScccoiiiiiiieec e a e e s st re e e e e e e e ennreees 42
3.5 ArchiMate® Technology Layer -EIEMENTSooiiiiiiiiiiie ittt st e e sab e e e sbaee e e 43

4. ArchiMate® REIAtIONSIIPSeeieiiie ettt e e et e e e e s e s b b be et e e e s e e aasbbee e e e e e e anbebeeeaeeeannaneeas 44
LY 1= =T g To o L PP 46
LT Y 1= = T g To o[- B o = SRR 46
5.2 MELAMOEI - FUIL ...ttt e e ettt e e e oo e bbb e et e e e e e s abbe e e e e e e e aanbebeeeeeeeanbnreees 47

L T To | =T (T 5/ 1 PSP 48
L 2 T TS (oY T PSRRI 49
6.2 BUSINESS MOUEI VIEBWSeeiiiiiiie ittt ettt e e ettt e e e st e e e ekt e e e ante e e e anbae e e e anbeeeeanbbeeeeanbeeeeanteeeeannees 49
TR @11 1o 1 1= T YT SRR 49
LY = o T T OO PP PPPPPPPPPP 49
6.5 SOIULION AFCRILECIUIE VIBWSeiiiiiiie ettt ettt ettt e e et e e e ettt e e e ettt e e e anbe e e e ettt e e e anbe e e e enbbeeeeanbeeesanbeeeeannres 50

7. Frameworks, METNOOS & TOOIS.......uuuiiiiiiiiieieeice ettt e e e et e e e e e e e e e ee e e s bt e eeeeeseesaa b seeeeaeseesasbbanaeaeaeseees 51
7.1 Lean EA FrameWOIK (LEAFR) ittt ettt e e e e e e bbb e e e e e e e e e bb et e e e e e s e aanbebeeaaeseanbnneeas 51
7.2 Lean EA DeVElOPMENT (LEAD)uuiiiiie it e e e ettt e e e e e sttt e e e e s e st e e e e ae e s snteae e e e e e s sasnbaneeeeesannnseaneeaeesannrnneees 52
7.3 GOal-Driven APProaCh (GDA) ...ttt ettt e e bt e e e b e e e et e e e e e b e e e e e e e b e e e nres 53
7.4 Service-Driven APPIrOACH (SDA) ..ottt e e e e e e e e e e e e s e e e e e e e e e — e e e e e e e e e raareaaeeaaanraraees 54
ST (o 411 UG R USRS 56
7.6 EA CONENTE FrAMEWOIKSciiiiiiieiitie ettt e e e oo ettt e e e e e e aat b ettt e e e e s e abebe e e e e e s aaannbeeeeaaesaannbeaeeaaeesanrnbees 57
AT R = Y= (=T N o 1Yo T S 57
7.6.2 ASPECE-OriENted FraMEWOTK.eiiiiiiiiie ittt ettt et b bt e e st bt e e s mba e e e sabb e e e snnneeas 57
7.6.3 VIEWS & MAPS FramEWOTKueeiiiiiiiieiii ettt ettt e e e et et e e e e e e s bbb e e e e e e e e e abbbe e e e e e e annnnneeas 57

7.7 SIPOC (Suppliers, Inputs, Process, OULPULS, CUSIOMETS)coiuiiiiiiiiieeiiiieeesiieeesiiee e s sibee e sbee e ssbee e s sereeeeeees 58

T Y o] o= g To [T O ST O PPOT PP TP OTPPP 59
8.1 AppendiX 1: Cloud SEIrVICE MOUEISccciiiiiiiiiee e s e e e s e e e e e e e s e s e e e e e s ssnreteeeaeesannsnreees 59
8.2 Appendix 2: Modelling Tips & Tricks + EXIra PAEINScocuiiiiiiiiiiiiiiee ettt 59
8.2.1 LiN@ WAL AN COlOF ...ttt ettt et e e e e ettt e e e e e e sabbeeeaae e e s anbbbeeeaeeaaaannbeeeaaeaaannes 59

S T I Yo 1= o o PSR 60
IZC €1 (01N o1 o [SO 60
8.2.4 ADSIIaCtiNg BIBMENLSeiiiiiiiii ettt ettt e e e e e sttt e e e e e s e st b be e e e e e e e aanbbeeeaaeeaanne 60
8.2.5 Enterprise Application Integration (EAI) PALEINScceeeiiiiiiiieie e ieiiieee e e e e s seeee e e e e ssnrrer e e e e s s snnnreeeeeeaeannes 61
8.2.6 INFOrMALION RESOUITEeiiiieiiiiiiiiii ettt e e ettt e e e s e sttt e e e s s snbbeeeeaeeesasbebeeeeeeeaannsbeeaaaesaannes 62
8.2.7 API (Application Programming INTEITACE)cciiiiiiiiiie e e e e et re e e e e s s e sannre e e e e e s e nnnes 63
8.2.8 LAYEIEU PrOCESS VIBWeiiiiiiiieiiiit ettt ettt sttt ettt e e et e e s a b e e e e b bt e e e nb b e e e enbb e e e s anbneeeennes 64
8.2.9 Anatomy of @ BUSINESS Capabilityueeiiiieie e e e e e e e 64
8.2.10 Capability-Based Development of an Organizationcccceeeiiiiiiieie e eneee e e 66

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

1. Introduction
1.1 Purpose And Scope

This document covers ArchiMate® patterns and examples, those of which can be used as recipes and inspiration
sources when modelling concepts and solutions related to the development work of an organization. ArchiMate® is
a registered trademark of The Open Group

Almost all the business relevant behavioral and structural elements of an organization can be modelled with the
ArchiMate®. ArchiMate® is a comprehensive and powerful notation, with a wide range of elements and
relationships. However, only a subset of ArchiMate® -elements and only a small set of diagram types are enough
for most of the modelling purposes (80% of the cases).

This document introduces the most useful diagram types and related ArchiMate® -elements. This subset of
ArchiMate® -elements is grouped into the layers of ArchiMate® Framework (figure below).

Passive Behavior Active Motivation

Structure | | | Structure _
Strategy
— —1 —
Business
— — —
Application
- —1 — — Layers
Technology
Physical :|
- - L
Implementation
& Migration
- — - -
| J
T
Aspects

Figure 1: ArchiMate® Full Framework.

The diagrams in this document are modelled according to ArchiMate® specification [1]. More ArchiMate® -
examples can be found from the blog [2]. This document is updated continuously, more interesting topics are to be
added, and existing content is to be updated according to new information. This document can be freely used and
shared.

1.2 References

[1] ArchiMate® 3.2, Open Group, 2022. https://pubs.opengroup.org/architecture/archimate32-doc/

[2] Enterprise Architecture at Work, 4" Edition, Marc Lankhorst et al., Springer, 2017.
[3] Mastering ArchiMate® , Edition Ill, Gerben Wierda, 2017.

[4] Lean Enterprise Architecture Method For Value Chain Based Development In Public Sector, Hosiaisluoma et
al, 2018. https://www.hosiaisluoma.fi/blog/lean-enterprise-architecture-method-for-value-chain-based-
development-in-public-sector/

[5] “ArchiMate® Examples” blog, Eero Hosiaisluoma. https://www.hosiaisluoma.fi/blog/ArchiMate® -examples/

[6] “Holistic Enterprise Development” blog, Eero Hosiaisluoma https://www.hosiaisluoma.fi/blog/

[7] “ArchiMate® Cookbook” blog, Eero Hosiaisluoma https://www.hosiaisluoma.fi/blog/ArchiMate® -cookbook/

[8] Value analysis with Value Stream and Capability modeling, Christine Dessus, 2019,
https://www.slideshare.net/chdessus/value-analysis-with-value-stream-and-capability-modeling

Eero Hosiaisluoma ©

https://pubs.opengroup.org/architecture/archimate32-doc/
https://www.hosiaisluoma.fi/blog/lean-enterprise-architecture-method-for-value-chain-based-development-in-public-sector/
https://www.hosiaisluoma.fi/blog/lean-enterprise-architecture-method-for-value-chain-based-development-in-public-sector/
https://www.hosiaisluoma.fi/blog/archimate-examples/
https://www.hosiaisluoma.fi/blog/
https://www.hosiaisluoma.fi/blog/archimate-cookbook/
https://www.slideshare.net/chdessus/value-analysis-with-value-stream-and-capability-modeling

ArchiMate® Cookbook
Patterns & Examples

2. ArchiMate® Diagram Types

2.1 Motivation View (Goals View)

Stakeholders

To
WHOM?

Drivers

WHY?

Assesments

WHAT? Goals

Outcomes

Principles

Requirements

(@e)
Stakeholder A
Driver 1

Assessment 1

Outcome 1

TAN

Principle 1

ZAN

.

Requirement 1

=

i

Capability

(@e]
Stakeholder B
Driver 2
Assessment 2
Goal 2
ZAS
Outcome 2
Constraints
/T

Requirement 2

Core elemen((s;

Business Service

Figure 2: Motivation View - Design Pattern.

Stakeholder C

Driver 3

Assessment 3

Outcome 3

TAN

Constraint 1

Requirement 3

Zs

Application Service

(@o)
T\
0
Value
/o4
/57
—_—

A Moativation View (a.k.a. Goals View) can be used to depict why demand is meaningful: WHY this change is
needed. With the Motivation View it is possible to model crucial drivers and root causes behind the demand, actual
goals and related outcomes, as well as concrete requirements for further development. The Motivation View
answers the questions to WHOM, WHY and WHAT. Whenever appropriate, a Value can be associated with the
Motivation View, if it is important to illustrate the concrete benefits of the demand (development target).

This diagram type is modelled with ArchiMate® Motivation- and Strategy -elements.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.1.1 Motivation View - Example

Stakeholders

Customer Value

(@e) ManagementCO (@e)
CEO (Stakeholder) Board ‘ CFO (Stakeholder)
(Stakeholder)
Drivers I ‘
Customer & Employee & Development&R
satisfaction ‘ ‘ satisfaction process slowness ‘ Cost-efficiency
(Driver) (Driver) (Driver) (Driver)
Assesment% I | I
Customers afe Market © Idea-to- © Market 0O Cost Structur®
moving to pressure for production is ‘ share is is not ‘
competitors |_service design inefficient | declining competitive
Goals
Customer servid® Speed up Increase ‘
improvement Increase Employee development Automation ‘ ‘ Cost reduction
(Goal) satisfaction (Goal) process (Goal) (Goal) (Goal)
Outcomes
Customer Employee Faster Cost ,s"u,cture

Increased ‘ (

Val satisfaction satisfaction development automation of 15% Cost reduction of —— Improvement
(Value) increased 20% increased 20% process of 25% (Outcome) 15% (Outcome) (Value)
A N VAN A 2
Requirements : : Q :
Centralized /7 Digitalized /7 Development/7 Process [7 Enable [7
customer service services Operating Model Automation ‘ ‘ Cloudification

(Requirement) (Requirement) | Change (Requirement) (Requirement)
ZX N
Course of %tions : D :
Digitalizatio Integrated Cloud
Strategy (Course Development Strategy
of Action) Operating Model (Course Of
- — 7] AN < AN
Capabilities: : :
Customer df Digital Centralized of RPA) AP| o
Service Platform Demand (Capability) Management
(Capability) (Capability) Management (Capability)
ResourceI I I I I I
Self-Servic@p Modernized> Demand (I} () (I8 [
Apps DevOps Team Management RPA Team RPA Platform API Gateway
(Resource) (Resource) Team (Resource) (Resource) (Resource)

Figure 3: Motivation View - Example.

The Motivation View can be applied to many kinds of purposes, such as to depict a strategy of the whole
organization or to define the business case or requirements of a single development target.

ArchiMate® Motivation- and Strategy -elements are quite self-descriptive when illustrated within the titled groups
(as shown in the figure above). Diverse stakeholder groups (managers, process- and software developers etc.) can
read the Motivation View without deep knowledge of ArchiMate® . As a result of this, the Motivation View is a very
multipurpose diagram type. It would be important and valuable to create a Motivation View for each and every
demand for change - before any (“build or buy”) actions are to be taken.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.1.2 Risk Analysis View

Risk / Securit$
Threat (Driver)

| Jo

Risk (Assessment)

Security aspect (ISO 27001)

Objective (Goal) Objective (Goal)
AN AN

Risk Control :] Security Contro@ <}

Control Measufe’) I"fszrcrzfitt':n B|> Information 0
(Requirement) Requirement Security Principle
AN

<<EA element>>

Figure 4: Risk and Security View - Pattern.

Risk and Security View. Mapping of Risk and Security Concepts to the ArchiMate®. Security and data protection
matters are part of risk management. This modelling approach covers them both.

This diagram type is modelled with ArchiMate® Motivation -elements.

References:

e How to Model Enterprise Risk Management and Security with the ArchiMate® Language, Open Group,
DocumentNo: W172, 2017.
e Modeling Enterprise Risk Management and Security with the ArchiMate® Language, Open Group, 2015.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.2 Business Model View
2.2.1 Business Model Canvas (BMC)

Key Partnerships Key Activities Value Propositions Customer Relationships | Customer Segments
= - a
Business .
i i i i Business Actor
Business Actor Business Process Business Service Interaction
Q Business
Business Role Business Function Product Business Role

Collaboration

Business @ Capabilit <
Collaboration apaDiy]
Key Resources Channels
Contract
[-0
Resource Business Interface
(@] (ae]
Stakeholder Business Object Value Stakeholder
Application £]
Component
Cost Structure Revenue Streams
(Value /‘ Value

Figure 5: Business Model - Business Model Canvas (BMC).

A Business Model Canvas (BMC) -diagram can be used for modelling a business model or a business case.

This diagram type is modelled primarily with ArchiMate® Business Layer -elements together with certain
Motivation- and Strategy -elements.

2.2.2 SWOT Analysis View

Assessment jol
SWOT analysis 5o
Internal Assessment jel
Strengths je) Weaknesses jel
Strength 1 0O Strength2 © Weakness 1 0O Weakness 2 ©
External Assessment §e)
Opportunities gl Threathts bl
Oppo;tunitv jel Oppo;tunity jol Threath1 © Threath2 ©

Figure 6: SWOT Analysis - Design Pattern.

A development target can be analyzed and depicted with the SWOT View -diagram. (SWOT stands for Strengths,
Weaknesses, Opportunities and Threats.) This diagram type is modelled with ArchiMate® Assessments -elements.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.2.3 Value Stream View

Value 1

association

Value Stream

Demand (Requirement) —M— >~
association

Value Stage 1

serving

Capability Area 1

o
Capability 1.1
o

Capability 1.2

Figure 7: Value Stream - Design Pattern.

Value 2

association

Value Stage 2

serving
Capability Area 2

:d

Capability 2.1

o

Capability 2.2

Value 3 Stakeholder

assodiation

\assoclation
association

Value Stage 3
Outcome

influencing

serving

Capability Area 3

i

Capability 3.1

Capability 3.2

Version: 1.0
Date: 2020-02
Al

(@e]

-16
uthor: Eero Hosiaisluoma

A Value Stream diagram defines e.g. how value is created for the customers according to the Business Model. In
addition, value stream modelling can be used to depict how the business capabilities are connected to the value

stream. This makes it visible what is the role and meaning of each capability (and related resources), and what is
the actual value-add of each capability in the overall end2end value creation stream (process). As such, the value
stream description (with capability connections) visualizes both the beneficial and unproductive capabilities, when
measured with pure value-creation factors. How an organization creates value for the customers, and with what

capabilities. A value stream focuses us to “start talking business value instead of architecture”. Architecture, in turn,
defines the behavior and structure behind each capability.

This diagram type is modelled with ArchiMate® Strategy -elements. (The Value Stream -element is introduced in

the ArchiMate® 3.1 [1]).

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.2.3.1 Value Stream - Example

Customer-driven ~Customer-driven Customer @
concepts (Value) innovative services Satisfaction Customer
(Value) (Value)
. . association
association association
Idea to Production
/) Design Development Operations New & modiﬁe@
POTA e —— e A D T S e » —==—==%=-—=3> service or process
flow flow influencing | (Outcome)
rm———— >
I
I
:ﬂcw serving serving serving
1
Management Design Development Operations
’S’:;it:iilc o RE;;‘S:;?; G| Demand i Development o Procurement o Service i IT operations i
9 P Management Management Management Management
Management
g:‘:,::?:s i Innovation «f Customer L Product L Project < Service Portfoli&é Change «f
9 Management Experience Design Management Management Management Management
Dc:s:{:tl:;:’t i Idea Portfolio of Portfolio Planniné De;;::f;:)rlv'l:n(o g’;ﬂ:::)mrenne‘:: o
P Management and prioritization ! P
Management Management
Tserving Tserving Tserving Tserving
Supporting
| [t [y | [o | LR
9 Y 9 Management Management
Management Management Version: 2019-11-11
Author: Eero Hoslaisluoma

Figure 8: Value Stream - Example.

The Value Stream (figure above) represents the Business Model (added with value elements), whereas the
Business Process (figure below) represents the Operating Model (the implementation of the Value Stream). In that
case, the value stream and process describe the same “thing”, but in different abstraction levels.

Value Stream 1

Value Stream Value Stream Value Stream

Business Model

Stagel ~ —------- > Stage2 @ —------ > Stage 3
flow flow
&
Erealizing
Business Process 1 =
Business > Business > Business > 5
Process Step ——— > Process Step ——— » Process Step Operating Model
1 triggering 2 triggering 3

Figure 9: Relation of the Value Stream and the Business Process.

“A Business Model should also provide a very high-level view of the key parameters that together combine to
produce the value proposition. An Operating Model explains the configuration of the enterprise resources
considered optimal by the leadership team for the realization of the business model. In other words, how will the
business model be realized by some suitable combination of People, Process, and Technology (PPT)”. [Ed
Walters, Modeling the Business Model Canvas with the ArchiMate® Specification, Document No.: W195, Published
by The Open Group, May 2019.]

The topic of value stream analysis is covered in more detail by Christine Dessus in “Value analysis with Value
Stream and Capability modeling” (see [8]).

Eero Hosiaisluoma ©

10

ArchiMate® Cookbook
Patterns & Examples

2.2.4 Strategy & Capability View

Strategy

e o 4 For the successful and efficient operational development of an

Action)
A - | ealizati organization, it is crucial that the strategy and strategic goals can be
jreaeaton TN connected to the Business Model, to the Capability Model, to the
. ' Value Stream Operating Model, and preferably to all the development targets.
Capability —serving—>
The strategy can be modelled with ArchiMate® Strategy -elements:
Iassignment Course of Action, Value Stream, Capability and Resource. With these
elements, the organization can be analyzed and depicted according to
))
Resource Resource-Based View (RBV) -approach.

Figure 10: Strategy - Design
Pattern.

A Capability Map View, the Capability Model, is valuable to identify the following:
1) the strategic core capabilities, which constitute the fundaments of the existence of the organization (incl.
value creation, competitive advantage), and
2) the basic capabilities, which enable the daily operations of the organization.
For capability assessment and identification, the following can be considered:

e a capability defines WHAT the organization does (whereas a resource defines HOW),
e a capability is unambiguous (no overlaps), and relatively stable by its nature,
e a capability can be divided into more detailed, lower-level capabilities,
e a capability can be grouped into a capability group,
e a capability can be:
a. organizational (intangible, related to the existence, strategy or value creation of an organization)
or
b. operational (produced by tangible or intangible resources, related to the operating model).

2.2.4.1 Capability Map View

General Business Capabilities |
Strategic o Risk o Knowledge Security dH Enterprise HR :|
Management Management Managament Management Architecture Mgmt Management
(Capability) (Capability) (Capability) (Capability) (Capability) (Capability)
Financial Management oH Customer Management oH
Accountn | Investement Financial Customer DatadH Customer Customer
(Ca abilit\g Management Reporting Management Reporting Relations Mgmt
P (Capability) (Capability) (Capability) (Capability) (Capability)
Customer OrdegH Customer Billingg Digital CustomeH
Management Management Managament
(Capability) (Capability) (Capability)
Development :| Operations oH
DevOps | Data Analysis | IT Managgment &f IT Service Lifecycis] IT Vendor of
(Capability) (Capability) Operations Managament Management
(Capability) (Capability) (Capability)

Figure 11: Capability Map View - Example.

A Capability Map View is modelled with ArchiMate® Capability -elements. Capability Groups can be modelled with
either Capability- or Group-elements.

Eero Hosiaisluoma ©

11

ArchiMate® Cookbook
Patterns & Examples

2.2.4.2 Strategy & Capability Planning View

Stakeholders

@ A @
‘ CEO (Stakeholder) CFO (Stakeholder) ‘
Drivers
Customer satisfaction Development process

(Driver) B . Cost reduction (Driver)

complexity (Driver)

Strategic Goals ‘ ‘ ‘ \

Efficient customer Efficient, Lean and agile Automatization (Goal) Reduction of

service (Goal) development process maintenance costs
(Goal) (Goal)
o e £
Outcomes / Metrics : : :
Increased g’)
Customer satisfaction Faster time-to-market automation of Cost reduction of 1
increased 20% of 25% (Outcome) 15% (Outcome) (Outcome)
(Outcome)
AN FAN FAN FAN JAN FANVAN AN
Requirements i
Y

Process Automation Cloud services
(Requirement) (Requirement)

Changed operating
model (Requirement)

Single point of Contact

(Reguirement)

o (7
(Requirement) ‘

Digitalized services

FaN o A N Fa
Strategic Actions (Gourse of Actions) H H H
Digitalization (Course Lean & agile Automatize Business Cloud Strategy (Course
Of Action) organization culture Processes (Course Of Of Action)
(Course Of Action) Action)
7N Ay 7Y fay ZaN
Capabilities : : :
o8 o o | o
Customer Service Digital Platform Lean & agile operating - APl Management
(Capability) (Capability) model (Capability) et (Capability)

Figure 12: Strategy & Capability Planning View - Example (ref. “Strategy to Capability” Value Stream).

The Strategy View & Capability Planning View is modelled with ArchiMate® Motivation- and Strategy-elements
(figure above). This view and these elements can be used for Capability-Based Planning (CBP) purposes.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.2.4.3 Strategy To Capability View

Stakeholders

Customer O Chief @ Shareholder O
(Stakeholder) ‘ Executive ‘ ‘ (Stakeholder) ‘
Officer (CEO)
Drivers | \
Stakeholder Business &B Profitability &g
satisfaction perfomance ‘ (Driver)
(Driver) (Driver)
Strategic Godls

Increase Customé® — —___ Increase Busines®

inﬂujﬂcing’\ﬂ”iw (Goal)

Increase Profit

Satisfaction (Goal) (Goal)
_—
. %4
inﬂuenlcing +
.]
realizatiop
Increase Employe ! o e:r::::ation ..EI';E%";RZ;;:I“ Automatization
satisfaction (Goal) [(Goal) (Goal) (Goal)
: AN < AN
Expected Outcomes / metrics Iz i i t :
: realization realization
Improved custorr@* Increased @ Increased
satisfaction ‘ Profitability ‘ ‘ automation
(Outcome) (Outcome) of 15%
AN N yaN
Courses of Actions realization realization realization

Focus on Custom

Digital strategy 4@ Automatize Businesé®

Experience of Services ————<> (Course Of Processes (Course Of
(Course Of Action) Action) Action)
A~ an AN ~
irealization :realization irealization irealization
Business Capabilitieis greallzatlon
EA Management i Electronic & Digital Customerct# P o
T self-service Managament o
Ll L (Capability) (Capability) Ll
Resources Iassignment assig{ment assigIment assigIment assig{ment
() Customer-facindiiy Customer (b Automation [}
EA team (Resource) Applications Support Applications
(Resource) (Resource) (Resource)

Figure 13: Strategy To Capability View - Example.

Another example of how Capability-Based Planning (CBP) can be supported by modelling. Capabilities can be
identified based on the strategic course of actions, which can be derived from strategic goals and -outcomes.

For the sake of enabling strategy execution in practice, the strategy statements should be expressed as
imperatives, actionable clearly stated clauses. These imperative actions can be modelled with ArchiMate® Course
of Action -elements. A suggested form is used imperatively as follows: “Focus on Customer Experience”,
“Automatize Biz Processes”, “Establish Demand Management virtual team” etc.

Eero Hosiaisluoma ©

13

ArchiMate® Cookbook
Patterns & Examples

2.2.4.4 Capability Planning View

Digital strategy
(Course Of Action)
FAN

‘realization

Digital Customerdf
Managament

[]
Customer-facir@}
Applications
(Resource)

assignment

(Capability)
JaN

‘realization

Digital Customer Management Capability.'

Self-service
(Business Service)

Electronic services
(Business Service)

AN FAN

:realization ‘realization

Business Process =3

Tserving Tserving

Portal Application ERP Application
realization

Customer service
(Business Service)

AN

‘realization

Customer Servi(&
service <—=» Team (Business ---------
(Business assignment Actor) realization

Tsewing

CRM Application

Customer o>

Customer-facing applications

Figure 14: Capability Planning View - Example.

assignment
.
Customer ([
Support
(Resource)

This view can be used for designing the actual architectural building blocks to realize a capability. The Grouping -
element can be used for aggregating the elements into a logical entity.

2.2.5 Implementation Roadmap View

Lean & Agile
Change Program
2019

Program Plan Roadmap
(Deliverable) (Deliverable) (Deliverable) plan (Deliverable)
A I A o
Frogram * Program :Planning ; :
Approved Scrum training
(Implementation trigg.ers (Work Package) (Work Package)
Event)
ArchiMate 3 :
training Work 7
Package)

Figure 15: Implementation Roadmap View - Example.

S

S Production &&

Cultural Change Operating Model Service Mgmt
(Gap) Change (Gap) Integration (Gap)

2019/Q1 (Plateau) =

a a o
Change Probram (Work Package) i :

Agile training plan

Demand Mgmt
Team
establishment

Operating Model
Change (Work —»
Package)

EA function re-
organization
(Work Package)

2019/Q2 (Plateau) = . 2019/Q3 (Plateau) =

ArchiMate training

P o 7 7y

Tool integration
plan (Deliverable)

ZAN

Tool selections
(Work Package)

Demand Mgmt Agile Development

Package) Package) Package)

This view can be used for modelling the implementation plan of a strategy or capability etc.

An implementation roadmap can be added with the core enterprise architecture elements (such as application
services) that are to be implemented in certain phases as illustrated in the figure below.

Eero Hosiaisluoma ©

2019/Q4 (Plateau) =

Service Mgmt
—————> practicing Work — Integration (Work — Integration (Work —® (jmplementation

Program
Completed

Event)

14

ArchiMate® Cookbook
Patterns & Examples

Gapl & Gap2 &

/ \ / \

= ™ Transition = Transition = Transition = —™ —
As-Is Architecture Architecture 1 Architecture 2 Architecture 3 To-Be Architecture
Group of app services 1 Group of app services 2 =p él:l:(:nlghu?lan;::\‘:lrl:nwtw
Requirement Date: 2019-10-10
Application Service Application Service Application Service Application Service Author: Eero Hoslalsluoma
2 5 6 aN
Application Service App\icali:n Service A Application $:|
Component 1
o £
Deliverable 1 Deliverable 2 Deliverable 3
FAN FaN FaN

Program A (Work Packagei) H H
Project 1 (Work Project 2 (Work Project 3 (Work
Package) -_— » Package) P —— Package)

Figure 16: Implementation Roadmap View - Example 2.

This version (figure above) can be used for grouping the changes into the implementation phases.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.3 Layered View

External Roles and Actors

Business Actor -
assignment

Business Services

Processes and Internal Roles and Actors

= Business Process
Business Actor &———»

Customer

(Business Role)

serving

Business Service A

2

irealization

=

—————————————————————— > Business Object

External actors (such as
customers or partners) and
roles, to whom organization
provides services.

Business Services that are
served by the Organization to
its customers

Business processes realize
Business Services.
Internal Actors and Roles are

i A
assignment access assigned to processes.
Pay
Application Services serving
Application Services support
Application Business and processes. E.g.
Service A user interfaces (GUI) or
app2app interfaces (API).
AN :
Applications and Data ;realization Erealization
: Applications realize
Application £] 3 Application Services and
ComponentA | gecess T > Data Object manage data assets.
o
Technology- and Infrastructure Services serving :
Technology Services support
Technology Applications. E.g. platform-,
Service A capacity-, network-, DNS-
services.
AN
Infrastructure / Platforms i realization i realization
i i Platforms, servers, system
Platform A (7] softwares, devices, networks
(Node) ~ froemeeoeeeeemeneeenss > Artifact etc.
access

Figure 17: Layered View (Overview) - Basic Design Pattern.

The Layered View combines ArchiMate® -elements from different ArchiMate® -layers as follows: Business-,

Application- and Technology Layers.

The Layered View enables the development target to be analyzed and depicted as a layered “stack” as follows: first
the business aspects on the top, then application aspects in the next layer, and finally the technology aspects on
the bottom. This approach makes the overall big picture visible with all the necessary relationships between all the
behavioral and structural elements, which are meaningful in the context of the development target in hand.

The layers are connected with the services (of different kinds), so in that sense, the Layered View is enabling the
Service-Driven Approach (SDA) to analyze and depict a development target. This diagram type is one of the most
useful and informative, because that makes it possible to visualize all the important relationships from bottom-up
and top-down between all the necessary elements on each layer (biz, app, tech).

This diagram type can be modelled with any elements of the ArchiMate® layers.

Eero Hosiaisluoma ©

16

ArchiMate® Cookbook
Patterns & Examples

2.3.1 Layered View - Business- and Application Layers Example

prrTTTmmmansmenasemesneeney Customer [o sy
H place access
serving
v i
Customer Notification
Order Production Service (Business <M :
(Business Object)
%ealization
ireceive H
V Production process =
Production % Production E>——— | Processing I:D— | Packaging = > Delivering g
Unit assignment planning flow flow flow send
Iassignment
Delivery Partner %
serving serving serving serving Delivery System
Resource Production Production Warehouse
mgmt Planning Mgmt Mgmt composition
FAN FAN AN FAN
i realization irealization |realization realization
Resource Plemnin%—-| e B Warehouse g] IDtehr"rfEW -0
Application O onL syt Application serving "apﬁce

Figure 18: Layered View Example - business and application layers.

This example diagram of the Layered View connects business and application layers via the application services.

2.3.2 Layered View - Business Layer

Customer Groups %
Customer % Customer % Customer %
Group A Group B Group C
Tserving
Business Services (@]
Business Service 1 Business Service 2 Business Service 3

Iassignrrlent

Channels (Business Interface) Ee)
Business -O Business -QO Business QO
Interface 1 Interface 2 Interface 3
(Web) (Phone) (on-site)
#:omposed
Business > Business = Business =
Process 1 Process 2 Process 3

Business Actor X

Figure 19: Layered View, Business Layer - Design Pattern. Note: business interfaces as “channels”.
Note! Business Interfaces 1-3 are nested into higher level business interface “Channels” with relation type
Composition. Accordingly, Business Services 1-3 are nested into higher level business service.

The Layered View can be applied to what is appropriate for the purpose. For example, layers can be left out and
depict the development target from a certain viewpoint, e.g. from the business point of view like in the figure above.

Eero Hosiaisluoma ©

17

ArchiMate® Cookbook
Patterns & Examples

However, the layered approach is always based on the top-down order of the elements: customers on the top, then
the business services and so on.

2.3.3 Layered View - Customer Service Journey

Customer %
(Business Actor)

Tserving

Business Service

VAN
irealization
Customer Service Journey (Business Process) =
Pre-Service => Service (=+3 Post-Service =>
Internal Actor % 2 4 .
(Business Actor) .?ignr:ent Period —> Period —» Period

Tserving Tserving Tserving
Application Application Application
Service A Service B Service C

VAN VAN VAN

irealization irealization irealization
Application £] Application gl Application]

Component A Component B Component C

Figure 20: Customer Service Journey - Design Pattern.

The Layered View can also be taken from the customer viewpoint. Customer centric diagrams can be modelled as
Customer Service Journey or Service Blueprint diagrams. These diagram types combine the customer- and
organization viewpoints together. These are the “outside-in” and “inside-out” approaches.

2.3.3.1 Layered View - Customer Journey View - Example

Customer 2 Patient (D Legend
(Business Actor) assignment (Business k
9 Role) Business Layer
Tserving Application Layer

Qutpatient Care
(Business Service)

&
‘realization
Outpatient Care Customer Journey (Business Process) =
Pre-Service Period = Service Period = Post-Service Period =>
Observed = Movingto => = = =
need for » Registration JEE— care service = Waiting — Treatment — Exit
treatment trigger point
Wserving | T T 1
Self registration Guidance service Queuing service Patient record Guidance service
service (Application (Application service (Application
(Application Service) Service) (Application Service) (copy)
irealization A A i& A
Self-] Queue £] Patient) Self- 2]
registration Application Information registration
Application System Application

Figure 21: Customer Service Journey - Example.

The Customer Service Journey is a specialization of the Layered View, which combines business- and application
layer elements.

Eero Hosiaisluoma ©

18

ArchiMate® Cookbook
Patterns & Examples

2.3.4 Layered View - Swimline Process View

Business Role A

Trigger > Activity
triggering 1.1

Business Role B

-——>
Info 1.A

Business Role C

»> Activity
1.2
A
: Info 2
1
Or
Activity Activity
2.1 Iyes] 2.2
Activity 3.1
[no]
serving Tsewinq
Application Service Application Service
Al A2
*realization----------- 9e=sssssmseo--o-- - realization
Application {l
Component ——=—————=——=——
A Data A-1
A

Figure 22: Swimline Process View - Design Pattern.

Activity

serving

Application Service
B.1

+ realization

Application @

Component

-
Data B-1

Activity
1.3

serving

Application Service
C1

i realization

Application $:|
Component
C

i
Data C-1

This version represents the business roles as “swimlanes”, analogous to process modeling in BPMN.

2.3.5 Layered View - Service Design View

Business Role A

Trigger

=

Activity

triggering

Business Role B

Business Role C

\ 4

11 ———————» Acivity1.2

Activity

Tservinq

Business Service 1

]\semnq

Business Service 2

g realization g realization
Or
Activity ‘:D Activity
2.1 [yes) 2.2
Activity 3.1
[no]
serving]\S!qu
Application Service Application Service
Al A2
ZAN
E realization 1 realization
Application €]
Component ——————————————
A Data A-1

Figure 23: Service Design View - Design Pattern.

Eero Hosiaisluoma ©

And

Activity

2.3

serving

Application Service
B.1

AN

+ realization

Application {l
Component
B

\ 4

1.2

serving

Application Service
C1

FAN

i realization

Application @
Component
(e

1

I
___ 4+ Data C-1

(@}

—p Output

(@)

—» Output

19

ArchiMate® Cookbook
Patterns & Examples

This version (above) of the Layered View using “swimline style”, is focused on customer role. This view can be
used for service design purposes, for integrating “outside-in” and “inside-out” approaches into one view. The
customer journey path is represented as a top layer, whereas the intra-organizational layers are represented next
to the customer “swimline”. The bottom layers consist of applications and application services (which makes this
view much more informative than a pure process diagram that can be modelled with the BPMN). As such this is a
comprehensive view of a development target, a customer journey, a service (area) overview, process area,
operational view of a value stream etc.

In this example above, Business process steps are performed by distinct business roles. Practically, business roles
A, B and C are assigned to business process elements with ArchiMate® Assignment-relationship type. Business
role -elements are visualized as large objects that represent the “swimlanes”, and then the business process -
elements are “nested” into those business roles. This modelling style saves space and minimizes crossing lines.

This version of the Layered View below combines business layer elements and application layer elements. This
cross-layer view can be used for modelling high-level process flow, to which application services and/or
applications are linked. With this view, a business process can be illustrated at a high level with ArchiMate® —
without the need for BPMN modelling. In addition, this view enables connecting process steps to actual application
services used.

Customer (Business Role) @
Customer Journey =
=D 2. Service Period c=> =
1. Pre-Service . ':? = 3. Post-
Period —» Movingtocar® —» wajting ~ —» Treatment —» Service Period
service
serving
servin servin
Business Service A- g J)
Web Channel-O On-site ChannelD Chat Channel-O Biz interfaces
(Business (Business (Business are assigned
Interface) Interface) Interface) to Biz service
-
Business Actor A %
Internal Role 1 (Business Role) @)
Activity 1.1 =
(Business Process)
;
servin
Internal Role 2 (Bus{ness Role) | customer data 9 (@)
I
| Activity 2.1 =
: (Business Process)
)) A)
Application services >€™'"9 serving serving serving
|
S 5 Application Application
Application Application ; :
Service 1.1 Service 1.2 Senvice:2 Senvicess
Y ANF—, AN 7N 7 AN
Sodliations iz ~—==—== frealizing rrealizing
Application] Application] Application]

Component1 -

customer data

- Component 2

Figure 24: Service Design View - Design Pattern 2.

o

Component 3

This version splits the customer journey with phases (Pre-service period, Service period and Post-service period) is
added into the customer role, and channels added in between customer and personnel roles.

Business Process -elements are nested into Business Role -elements, which means that Business Roles are
assigned to Business Processes (in the model repository). In addition, Business Roles are nested into the Business

Eero Hosiaisluoma ©

20

ArchiMate® Cookbook
Patterns & Examples

Actor, so the roles are assigned to the actor. Hence, there are relations between these elements, even though they
are not visible. This layout of the element saves space in the diagram. The value of this view is that we can use
ArchiMate® and its relations when visualizing a “swimlines of roles with connected application services and
applications”.

The service layer can be divided into distinct business services, if that is the case. Whether there is a certain
specific business service that is to be designed, or there are several business services with specific channels that
are serving the customer role. However, the focus is on the customer service path — or the customer journey, the
customer perspective. As such, this approach is focusing on the outside-in approach, by linking the inside-out
behavior and structure to customer-facing process steps.

2.3.6 Layered View - Service Blueprint

Evidence

Admission Form Confirmation
A
Customer Actions H g
\:/ Customer Journey ‘ |;'>
Customer *—> Send Form > Receive decision
1 A
t 1
! !
On-stage / Front-stage Actions : :
| 1
v 1
Form Handling Contact
I
I
Back-stage Actions :
|
v

Customer Service @——» Receive & register Form

Support Processes

| SN, KRS M S |

I
|
i
l

v

Decision-maker *—> Process Form == Accept == Send Decision
I I I
I I |
Support Systems : : {
I I |
A 4 v J

Back-office SR, Back-office bgias Back-office

Application A Application B Application A

Figure 25: Service Blueprint - Example.

This version reflects the Service Design tool Service Blueprint, which is based on a layered approach that consists
of a) customer-facing and b) intra-organizational parts. The Service Blueprint can be easily modelled with the
ArchiMate® elements as shown above. This diagram can be used as a bridging tool (missing link) between the
Service Design and Enterprise Architecture Management (EAM) practices.

Eero Hosiaisluoma ©

21

ArchiMate® Cookbook
Patterns & Examples

Business Role A (@xo]
Activi :> I:"> Activi
Trigger ———» 1 lty > Activity 1.2 1 Zty —» Output
triggering . 3
T A A
i 1nfo 2 ' i
I nfo
Business Role B | I : I (@]
1 1 | 1
I I
Or And |
| - = - . = |
Activity Activity Activity [
1 1
TR e »O—»[esl s - R i |
Info 1.A Y Info 2 \
1 7'y I :
| |
I I
Business Role C : | :'"f° 2 | (@)
I I
| |
I I
: (o] Activity 3.1 H : |
! i ! i
| I \ 1 |
I | I | I
| |Info B \ | |
: Info A : : Data B : : Data C
v : 1 4 1
Application g q@-————————— 3 Application g Application $:]
O TIPOTICTIT [= === = o o o o e v o 'm0 > Component —————— > Component
A Data A-1 B Data B-1 (v
A 1
1 |
——— Data C-1

Figure 26: Service Blueprint as a Layered View.

2.4 Interaction View (Co-operation View)

There are three variants of the Interaction View diagram type as follows:

1) Actor Interaction View,
2) Process Interaction View and
3) Application Interaction View.

The Interaction View (also known as Co-operation View or Integration View) can be used for modelling
relationships between the actors, processes or applications. The main advantage of this diagram type is to
visualize the direction of switching information, and to illustrate the amount of the interacting elements. This
diagram type has been found very informative and the easiest way to visualize the complexity of the development
target.

This diagram type is to be used for modelling WHAT information flows in WHICH direction, from WHERE to
WHERE. This diagram type is not applied for modelling the “dynamics” of the information switching: which element
starts the interaction or what interfaces are used.

The ArchiMate® Flow-relationship type is used here to model the information flow between the elements. The
“information” can also be modelled as ArchiMate® Business Objects or Data Objects.

2.4.1 Actor Interaction (Co-operation) View

Business Actor% Business Actor %
A Business Object A-1 B

Business Object B-1

Business Actor %

_..
Business Object A-1

Figure 27: Actor Interaction (Co-operation) View - Design Pattern.

Eero Hosiaisluoma ©

22

ArchiMate® Cookbook
Patterns & Examples

2.4.2 Process Interaction (Co-operation) View

Business =D _______ > Business =>
Process A Business Object A-1 Process B

Business >

——————————————————————— > Process C
Business Object A-1

Figure 28: Process Interaction (Co-operation) View - Design Pattern.

2.4.3 Application Interaction (Co-operation) View

Application - i > Application g]
ComponentANSIe . _ o] Component B

_______________________ Application]
Data Object A-1 Component C
Figure 29: Application Interaction (Co-operation) View - Design Pattern.

This version of this diagram type is used for modelling application integrations at high level: what data flows from
which application to which application, in which direction. For more detailed level integration modelling, these

diagrams can be added with e.g. application interfaces or -services, and Trigger-relationships (see chapter 2.9.7).

2.5 Business Process View

Customer %
(Business Actor)

Tserving

Clerk @
Admission Service (Business
Role)
;realization Iassigned to
Application Process (=3
=
[OK] Accept
Application = Receive Check Anplicati ' HandleDecisi = (gle,:;rs,:)sr; =
i E— DS — Chec ication andle Decision —*
(Business Event) triggering Application P = Event)
Reject i
[No] iUpdate

create
v

DD G O E OTINY I <. <. s s S S B R e S S N RS S st i
(Business Object)

Figure 30: Process View - Example.

Process View is modelled with ArchiMate® Business Layer -elements as follows: Business Process), Business
Actor), Business Role, Business Object and Business Event. Relationship types are Trigger and Access.

Eero Hosiaisluoma ©

23

ArchiMate® Cookbook
Patterns & Examples

2.5.1 Business Process Functional Decomposition View

Business Service A Business Service B Business Service C
Business Function A () Business Fungtion B () Business Funétion C ()
z i realization i realization i realization
Business Process 1 A 4 i =
Process Step => Process Step —=> Process Step —=>
1.1 1.2 | E—— 3
trigger trigger
Iassignmen(Iassignment Ia”ignmem
Business Actor A Business Actor B Business Actor C

Figure 31: Business Function View — A process may span multiple business functions.

“A business function represents a collection of business behavior based on a chosen set of criteria (typically
required business resources and/or competencies), closely aligned to an organization, but not necessarily explicitly
governed by the organization.” [1]

A business function view can be used when it is necessary to model high-level business behavior, which groups
more detailed behavior (such as processes). A business function is a behavioral element, which is performed by a
structural element, typically by an organizational unit (e.g. department or group). A business function is a
meaningful behavior for the organization. Business functions can be used for dividing the business into parts, each
of which has certain logical cohesion based on the business services they provide.

Organization %

Business Function A (N| |Business Function B (N | Business Function C A

Core Processes

Business = Business = Business =
Process A-1 Process B-1 Process C-1

Sub Proyesses

Business o> Business o> Business o>

Process A-2 Process B-2 Process C-2
Business > Business => Business >

Process A-3 Process B-3 Process C-3
Iassignmenl Iassignment assignment

Organization % Organization % Organization %
Unit A Unit B 'Umt C
[Business Actor] [Business Actor] [Business Actor]

Figure 32: Business Process Map with Function-Based Decomposition.

A business process map can be defined based on functional decomposition (figure above). Note! Business units
shown here just to illustrate the typical mapping between business functions and business actors. Business actors
may not necessarily be shown in actual business process maps.

Examples of business functions are e.g. as follows: Finance and Accounting, Human Resources (HR),
Procurement (Buying/Purchasing), Legal, Customer Service, Property Management. A business function is close to
business capability, but they define business behavior in different abstraction levels: a business function represents

Eero Hosiaisluoma ©

24

ArchiMate® Cookbook
Patterns & Examples

business behavior in the operating model level, whereas a business capability represents business behavior on the

business model level.

For more detailed discussion covering the relation of business processes and business functions, see Gerben
Wierda’s book Mastering ArchiMate® Il [3].

2.6 Conceptual Data Model View

Customer
(Business Object)

Order (Business Delivery (Business Invoice (Business
Object) Object) Object)
Order Line Product (Business
(Business Object) Object)

Figure 33: Conceptual Data Model View - Example.

The Conceptual Data Model View can be used for modelling the business concepts and their relations of the
development target.

This diagram type is modelled with ArchiMate® Business Object -element, and Association, Composition,

Aggregation and Specialization relationship types. Some tools allow cardinality indicators (such as “one”, “many”,
“0..n") to be modelled on both ends of the association relations between the elements.

2.7 Data Model View

Customer data

(Data Object)
Order data (Data Delivery data Invoice data (Data
Object) (Data Object) Object)
Order Line data (Product data
(Data Object) (Data Object)

Figure 34: Data Model View - Example.

The Data Model View can be used for modelling the detailed, logical application-level information and their
relations of the development target.

This diagram type is modelled with ArchiMate® Data Object -element and Association, Composition, Aggregation

and Specialization relationship types. Some tools allow cardinality indicators (such as “one”, “many”, “0..n”) to be
modelled on both ends of the association relations between the elements.

Eero Hosiaisluoma ©

25

ArchiMate® Cookbook
Patterns & Examples

2.8 Technology Platform View (Infrastructure View)

Application $:I
P [> Component
]\serving serving
Technology Technology -O
: -« Interface
Service assignment
s L
i realization i realization
Platform (7 — @)
Artifact - ® (Node) composition Platform sw

assign t
ssignmen aggregation (System Software)

0

System Software(s) Operating System | assignment
and Device can be (System Software)
nested in Node

Tserving

aggregation

Iassignment
— 88

Device] ——————— Communication
association Network

Platform (Node) represents

the runtime configuration /
environment that is used by
the Application via

aggregation
Figure 35: Technology Platform View - Design Pattern.

The Technology Platform View (Infrastructure View) can be used e.g. for modelling the underlying infrastructure
and deployment of an application (software, servers, clustering, communication networks, load balancing etc.).

This diagram type is modelled with ArchiMate® Technology layer elements such as Node, Technology Service,
Artifact, Device, System Software, Technology Interface and Communication Network.

Intranet £ |
(Application
Component)

Tserving
Intranet Platform
(Technology
Service)
JAN
irealizing
Sharepoint Platform [T
A-1 (Node)

MS Sharepoint®)
2013 SP1 (System
Software)

Tserving
Windows Server))
2008 R2 SP1
(System Software)

Iassignment

Internal 8%
Server A-1 PRED- ——————— network
123 (Device) agsociation (Communica

Figure 36: Technology Platform - Example.

Eero Hosiaisluoma ©

26

ArchiMate® Cookbook
Patterns & Examples

2.9 Application Structure View (Solution Architecture View)

The Solution Architecture defines the behavior and structure of a single solution, which is a part of the Enterprise
Architecture (EA). A solution is a logically and physically independent, autonomous building block of the
organization wide EA. In the EA, a solution is a “black box”: its interfaces and services are interesting, but its
internal structure is irrelevant. As such, a solution is the smallest meaningful unit of EA. EA is composed of
solutions. A solution can also be comprised as a “system”, whereas EA is a “system of systems”. Systemic thinking
takes the holistic view by identifying and considering all the aspects of business, application and technology.

Solution Architecture, instead, covers the application as a “white box”: its internal structure and interfaces with
adjacent applications are interesting. The solution architecture comprehends the internal structure of an
application: the modularization (sub-components and their services/interfaces and dependencies). In addition, the
solution architecture typically takes the technology aspect into account - in the form of a “technology platform”.

2.9.1 Application Design Pattern (Basic Model)

Application he Application
Interface assignment Service
o
composition irealization
Application E.—’ Application :D;_ Data Object
Component assignment Process access

Figure 37: Application View - Design Pattern (Basic Model).

Solution Architecture modelling can be done with the elements of ArchiMate® Business, Application and
Technology layers. The logical view of the structure of a solution is modelled with ArchiMate® Application layer
elements such as Application Component, Application Service, Application Interface, Application Process and
Application Function.

The logical structure of a solution is modelled with ArchiMate® Application Component -elements. The internal
behavior of an application is modelled with the Application Process and Application Function -elements. Provided
services and interfaces (to adjacent solutions) are modelled with Application Service and Application Interface -
elements. The Application Interface -element is used for modelling the user interfaces (GUIs) and app2app
interfaces (APIS).

According to ArchiMate® derivation rules (introduced in the ArchiMate® specification), the basic application design
pattern can be depicted as shown below.

Application
Service

ZAN

‘realization

Application Al .
............................ > Data ObJECt
Component access

Figure 38: Application View - Design Pattern (Simplification of the Basic Model).

Note! Application services and application interfaces are the “different sides of the same coin”: a) behavioral
services and b) structural interfaces. Both can be used for modelling the behavior of an application that is exposed
for external use (interactions). Which one to use depends on the case. Application services can be used for
modelling functional dependencies and interactions. Application interfaces instead, can be used for modelling
concrete user interfaces (GUIs) or app2app interfaces (APIs) with operations. As such, application interfaces can
be used for modelling actual dynamics between applications, or between users and applications. Access -
relationship can be bi-directional (in case of read & write accessibility).

Eero Hosiaisluoma ©

27

ArchiMate® Cookbook
Patterns & Examples

If an application interface is to be modelled instead of an application service, then the application interface is
connected with the application component with a Composition -relation type (figure below).

Application O

Interface

lcomposition

Application gl
Component

Figure 39: Application Component and (provided) Application Interface.

GUI = Graphical User Interface, APl = Application Programming Interface, both interfaces of an
application. The former provides application services to the users, whereas the latter provides application
services to other applications. According to ArchiMate® specification: “An application interface represents
a point of access where application services are made available to a user, another application
component, or a node” [1].

2.9.2 Application Logical Structure View (Application Structure / Internal Structure)

Application Component A =]
Application £] Application £] Application £]
Component A-1 Component A-2 Component A-3

Figure 40: Application Logical Structure (functional decomposition into sub-components /modularization).

This view is useful in designing or understanding the main structure of an application and its sub-components and
the associated data. This diagram can be used e.g. to break down the structure of the application system under
construction, to illustrate modularization /decomposition: what are the sub-systems / sub-components what are the
application services (or application interfaces) they provide. The sub-components are nested into the main
component (Aggregation relationship).

Application Application Application
Service A-1 Service A-2 Service A-3
& = o
irealization H H
: , . <]
Application gl Application gl Application =N > Data Object A-3
Component A-1 Component A-2 Component A-3 access J

Application Component A

Figure 41: Application Logical Structure: sub-components and application services.

This view is useful in designing or understanding the main structure of an application, its sub-components and their
functions. This diagram can be used e.g. to break down the structure of the application system under construction,
to illustrate modularization (functional decomposition): what are the sub-systems / sub-components, what are the
functions and application services (or application interfaces) they provide.

Eero Hosiaisluoma ©

28

ArchiMate® Cookbook
Patterns & Examples

Application Component A =gl
Application Component A-1 =] Application Component A-2 2] Application Component A-3 2]
Application Q Application Q] Application Q Application => Application => Application =>
Function 1 Function 2 Function 3 Process 1 Process 2 Process 3

Figure 42: Application Logical Structure: Application Functions assigned to modules of an application (A).

Note! The behavior (functions) of an application can be modelled with either ArchiMate® Application Function or
Application Process -elements. The latter can also be used for modelling e.g. Robotic Process Automation (RPA)
or (scheduled) batch-processing behavior.

2.9.3 Component Model (CM)

Application Component Model 0-n (CM 0-n) is an application architecture modelling approach, which consists of
diagrams of different abstraction levels as follows:

e At Component Model 0 (CM-0) -level the diagram describes how the application interacts with its
environment, what are the boundaries and interactions with adjacent applications and users. The target
application is depicted as a black box.

e At Component Model 1 (CM-1) -level the diagram describes how the target application is decomposed into
modules (main components), their responsibilities, and what application services (or application interfaces)
those modules provide and require. The logical decomposition of an application is based on the functional
aspects, which typically relates to physical decomposition too. The target application is depicted as a white
box.

e At Component Model 2 (CM-2) -level, the diagrams describe how the main modules are decomposed into
sub-components, and what are their responsibilities, services or interfaces.

The Application Component Model (CM) diagrams below consist of application components and application
services. Alternatively, application interfaces can be used instead of application services depending on the case.
As always, it is important to utilize such a modelling style that is appropriate for the purpose, and model only those
elements that are relevant in the context, to fit for purpose. (Note! Application in this context is analogous to
solution or system.)

2.9.3.1 Component Model - 0 (CM-0)

Application gl Application g] User G A
Component X Component Y SEhRuLoup
ser?ing T T

Application Application Application
Service A-1 Service A-2 Service A-3

2 N a

2] Application - |
e A, | Application
Application Component A — Service D-1 Q Component D

Application Application Application
Service B-1 Service C-1 Service C-2

AN VAN ZAN
realization : i
Application £] Application £]

Component B Component C

Figure 43: Component Model - 0 (CM-0).

Eero Hosiaisluoma ©

29

ArchiMate® Cookbook
Patterns & Examples

The target application A” introduced in the middle of the diagram as a “black-box”, with all the application services
it provides, and with all the required services, realized by adjacent applications. This is the Enterprise Architecture
(EA) level view of the application: its internal structure is not relevant, but its services are.

2.9.3.2 Component Model - 1 (CM-1)

Application Application Application
Service A-1 Service A-2 Service A-3
L & o
irealization H H
Application ¢omponent A 2]
Application g Application Application g Application Application £] Application

=3 Service A-1-2- —> <— Service A-3-2 <—— Service D-1

Component A-1 1 Component A-3

- | |

Application Application Application
Service B-1 Service C-1 Service C-2

Component A-2

Figure 44: Component Model - 1 (CM-1).

The target application "A” opened as a “white-box”, with all its internal sub-components (modules) shown with the
services they provide and require. This is the Solution Architecture (SA) level view of the application: its internal
behavior and structure are interesting (incl. e.g. internal application components, application processes, application
functions, and application services or application interfaces they provide and require).

2.9.3.3 Component Model - 2 (CM-2)

Application
Service A-2

AN

i realization

Application Component A-2 £

Application] Application
Component Service A-3-2
A-2-1

|

Application Application &]
Service A-1-2- ——> Component
serving A-2-2

!

Application
Service C-1

Figure 45: Component Model - 2 (CM-2).

One of the main components (“A-2") of the application “A” opened in a more detailed diagram.

2.9.4 Database

A database is a meaningful unit in the overall enterprise architecture of an organization. E.g. “Client database” or

“Customer database”, “Product database” etc. A logical database is a composition of all the tables of an application

(e.g. “Customer table”, “Orders table”, “Invoices table” etc.), which altogether build up a database.

A logical database can be modelled on the application layer with a) Data Object- or b) Application Component-
element. Which element to use, depends on what kind of database is in question: a) a passive structure or b) an
active structure. Data Object is suitable for modelling the passive data itself: what is the data, how it is structured or
composed (or aggregated) from other data objects, and what are the associations between these data objects.

Eero Hosiaisluoma ©

30

ArchiMate® Cookbook
Patterns & Examples

Application Component is suitable for modelling an active data structure that is capable of data management
behavior such as data processing and/or data storing.

Hiearchy Example Usage scenario
Hierarchy: Example of nesting: Usage scenario:
- a database can contain - database table(s) can be nested into a database -element, - an application can access a database
multiple database tables for the sake of readability and economical space usage in a (bi-directional read /write in this
large diagram example)
Database A 5
B Database A (Data Object)
(Data Object) Application A £] T
Database Table A-1 (CF::':EIIS:LIzS I~ r’ead {wrlte (Data Object)
(Data Object) E
Database Table
A-1 (Data
Object)

Figure 46: Modelling a logical database with ArchiMate® .

A Data Object can be used for modelling for example a logical database, a database table, message structure
(switched between applications) etc.
A Data Model View consists of database tables as shown below. (See also chapter 2.7).

Database A (Data Object)

Database Table A-1 S Database Table A-2
(Data Object) (Data Object)

Database Table A-3
(Data Object)

Figure 47: Data Model View.

A logical database can be modelled also with the Application Component, given that the database is capable of
performing data processing or data storing. In such a case, a database is part of an application: a logical
component of an application. (Other modular parts/components of an application can be for example “the front-end
application” and “the business logic application”).

Usage scenario

Usage scenario - three-tiered app:

- an application can contain a database
as a component (composition relation
not shown when using nesting)

Application A Z]
(Application Component)

Front-end App& |
(Application
Component)

1

Biz-logic App & |
(Application
Component)

)

Database A &
(Application
Component)

Figure 48: Database as a component of an application system.

In addition, a database can be modelled with technology layer elements such as Node, Artifact or System
Software. All in all, there are several ways to model a database, depending on the abstraction level, as shown in

Eero Hosiaisluoma ©

31

ArchiMate® Cookbook
Patterns & Examples

the figure below. It depends on the case, from which viewpoint a database is to be modelled, e.g. from the
application viewpoint as a logical entity, from technology viewpoint as a physical construct etc.

Database (Grouping)

Database A
(Data Object)
AN
realization
Database A Database A [T Oracle DBv. OO
Schema (Artifact) +——e Platform <>— 9.9.9 (System

assignment (Node) aggregation sqfiware)

Figure 49: Database modelling in different abstraction levels.
2.9.5 Application Integrations
2.9.5.1 Application Interface and Synchronic Request-Reply Design Pattern

Y oarme | £]

Application £] Application request (parms) Application
Component A (copy) Composition Interface A-1 (copy) > Component B (copy)

response (Data Object A-1)
Figure 50: Application Interface and Synchronic Request-Reply Design Pattern.

This pattern illustrates the following system case:

The application “A” provides the application interface “A-1”, which is used by application “B”. The
application “B” calls the interface “A-1” and transfers parameters within the request message, and
gets the response back within the message structure “Data Object A-1”". The application “B” is the
active party that initiates the interaction (information switching).

This view is modelled with dynamic relations of ArchiMate® : Trigger and Flow.
For more detailed Application Integration Patterns, see Appendix 2 (2.9.7).

2.9.5.2 ETL-Process

ETL-process =
Database Table | . | NI s | Database Table

{source} (Data read (access) write (access) {target} (Data
Obiect) s, Obiect)

Figure 51: ETL-process - Design Pattern.

This ETL-process (Extract, Transform, Load) pattern view is modelled with Application Process and Data Object -
elements. An ETL-process read from the source table(s), performs some processing, and then writes to the target
table(s) (figure above). The ETL-process can be assigned to the Application Component with Assignment-
relationship (figure below). Note! Behavior (such as process or function) is always performed by an active structure
element (e.g. an application component)!

ETL solution &

(Application
Component)
Iassignment
Source table A
(Data Object) ..o > ETL-process 1=>
read (Application Freeeeemesemrenenneans > larget ta!:"e X
............................ > Process) write (Data Object)
Source table B read
(Data Object)

Figure 52: ETL-process, tables and assigned application.

Eero Hosiaisluoma ©

32

ArchiMate® Cookbook
Patterns & Examples

2.9.6 Sequence Diagrams

2.9.6.1 Application Component Sequence Diagram View

Sequence diagrams are not exactly in the scope of the ArchiMate® (or EA), but instead, those are in the scope of
the UML (and SA). However, we can use ArchiMate® for modelling sequences of actions taken by e.g. Application
Components as shown below.

Application & Application &] Application &] Application]
Component A Component B Component C Component D

request (parm A)

-
response (data A)

Figure 53: Application Sequence View.

Dynamic relations “Trigger” and “Flow” can be used for modelling dynamics between application components. The
layout of this view can be positioned analogously to the UML sequence diagram.

2.9.6.2 Application Component Sequence Diagram View 2

This version (diagram below) illustrates how ArchiMate® can be used for modelling sequences of actions taken by
internal parts of Application Components. The internal parts are such as a) behavioral processes or functions and
b) structural sub-components. These are modelled with Application Process-, Application Function- and Application
Component -elements. Those are shown here just as alternatives.

Application 2] Application 2] Application 2] Application 2]
Component A Component B Component C Component D
1 25
Application -+ -——-—mmm - » Application H---—-——-—--———= » Application Q
Process X request (parm A) Process B-1 getData (parm A) Function Y
- EERRESROG RN
data A
3.
AP - — — — = — = — e e m e e — e m e - Application @
4.
Process B-2 put (parm A, data A) Component D-
e etttk o e e L T 1
response (data Aa) ack

Figure 54: Application Sequence View (2).

The flow of actions in this sequence diagram (above):

1. Application Component A’s sub-process X sends a request message with parameter A to Application B.

2. Application Component B’s sub-process B-1 receives the incoming request, and then calls (synchronously)
Application Component C, in which Application Function Y receives the request, performs some actions
and responds back.

3. Application Component B’s other sub-process B-2 sends a message with parameters to the Application
Component D, and then receives an acknowledgment. The Application Component D contains a sub-
component that executes the processing.

4. Application Component A receives the response message from Application Component B.

As shown here, we can model quite complex integration mechanisms with a combination of these elements
(Application Component, Application Process and Application Function and relations (Trigger, Flow). UML

Eero Hosiaisluoma ©

33

ArchiMate® Cookbook
Patterns & Examples

sequence diagram has its own specialized purpose in software design, but ArchiMate® can be utilized for quite
many modelling purposes - also in application design.

Application integration is one of the most important parts of enterprise architecture. That is why it is advantageous
if we can model more detailed how applications switch data, and what are the interaction mechanisms used. A
good source to dive into integration patterns, see “Enterprise Integration Patterns” -book, here is the link:
https://www.enterpriseintegrationpatterns.com/ .

Eero Hosiaisluoma ©

34

https://www.enterpriseintegrationpatterns.com/

ArchiMate® Cookbook
Patterns & Examples

2.9.7 Application Integration Patterns

“Application A" provides an application service "A-1" that

is used by "Application B" Application g Applicaion \ | Application g
This illustrates the dependency between the applications. Component A Service A-1 serving Component B
Structural relationships “Realization” and "Serving" are

used.

2.

A data object "A-1" flows from "Application A" to P 3| — £)
"Application B". Applicationccceeeene > Data Objact A=l freeeeeresseeesssssssanss s Application
The data object is explicitly modeled, and dependency Component A write (access) read (access) Component B

relationship "Access” is used.

3.

The data object "A-1" flows from "Application A" to

"Application B".

The name of the data object is marked as the name -1 | ——|
(label) of the flow connection between the application Application = L | Application
compaonents. Component A Data Object A-1 Component B
Dynamic relationship "Flow" can be used in the cases

when there are many data flows in the same diagram -

for simplicity and better readability.

4,
A datla object "A-1" flows from "Application A" to Application ﬂ Application ﬂ
“Application B". ComponentA | T TTTTTTTTTT Component B
The data object is explicitly modeled, and related to E E

“Flow" relation between the applications A and B.

This “relation to relation” is new feature of ArchiMate 3.0. Data Object A-1

“Application B" is the active part of the communication by

initiating the interaction with “Triggering" dynamic £)
relationship. Application triggers
The data object "A-1" flows from "Application A" to Component A | e
“"Application B". Data Object A-1

Use of dynamic relationships: “Triggering” and “Flow™.

g

Application
Component B

6.
“Application A" has an Interface "A-1" that is serving

“Application B".

Use of structural relationship "Composition” and Application £ Application =0
dependency relationship “Serving”. Component A
This is in line with ArchiMate specification version 2.x.

5 Application a
Composition Interface A-1 serving Component B

“Application A" realizes an Interface "A-1" that is serving

“Application B".

Application Interface "A-1" is structurally part (composed)

of "Application A", but the relation can be modeled by S 2] -

using “Realization" relationship according to ArchiMate Application = .. Application _O—;_ Application g
specification version 3.x. somponentiAl realization Interface A-1 serving Component B

“Application A" realizes an Interface "A-1" that is

requested by "Application B". Interface "A-1" responses to

“Application B".

Use of dynamic relationships: “Triggering” and “Flow” [P

IBQEIhErVwilh structural rel?alionsh%g "Reglizalion"‘ Application a9 Application -0 request (parms) Application £
This is in line with ArchiMate specification version 3.x. Component A realization Interface A-1 . Component B
This can be used when modeling more detailed --r;;;;o;;;;D-at-a-Object Al
synchronous integrations (such as request-reply

mechanisms).

9.

This is simplification of the previous example, just Application €] Ennlieanan =0 -

showing the mechanism / protocol that is used when Component A I """ e > Intsgace A1 web service request
“Application B" is requesting the Interface "A-1" that is realization o=
realized by the "Application A". web service response
This is analogous to UML, as reading direction is from the

caller application against the Interface / Application that

is used.

Application £
Component B

-

Application g ® Application < reguest (parms) Application g

Component A Composition Interface A1 - = Component B
response {Data Object A-1}

10.

Application A realizes an Interface "A-1" that is
requested by "Application B". Interface "A-1" responses to
“Application B".

This approach might be the most informative when using
“Application Interface” instead of useing "Application
Service". Using "Application Interface” is the most suitable
to model more detailed dynamics between the
applications. Using "Application Service" can be used,
instead, to model highl level behavioral dependencies
between the applications. Analogous to approach no 8.
Use of structural relationship "Composition” and dynamic
relationships: “Triggering” and "Flow".

Figure 55: Application Integration Patterns.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

2.9.8 Use Case View

Application X

Application

Service 1

Business ActorA | | Application

Service 2

Application
Service 3

Figure 56: Use Case View - Design Pattern.

ArchiMate® can be used for modelling the use case diagrams. A business actor can be associated with the
application services, which represent the use cases of the target application. These application services are the
functionalities of the target application, and they can be used in other diagrams (such as Layered View).

The intrinsic value of this approach: we can use ArchiMate® throughout the design cycle. From the business
requirements gathering phase to the further detailed design phase. The same language, the same tool. No need for
switching between UML and ArchiMate® , or from one tool to another®. Application services can be used when we
initially define what the application should do, and how the user roles use the application, and then finally, these
already identified application services can be used in later design phases within diverse diagram types.

@ Application X @
Application Appli;ation
Service 1 Service 1
Business ActorA .| Application - Business'Actor/A &— ADD"FBIIOH
Service 2 Service 2
Application Appli;a(ion
Service 3 Service 3

l Business Actor A
@ Application

3 Application Application 3:] ‘ Application Application Application
P— SRR TEES S ke eeecanesead
Business Actor A sevice2 N Component X Service 1 Service 2 Service 3
D ZA A o
a o : i
Application i
Service 3
£l

Application Component X

Figure 57: Use Case Analysis Views.

Use Case analysis can be performed by the following steps:

1. Use Cases are identified by using application services (analogous to UML Use Case Diagram)
2. Relation types are changed from Association to Serving (optional step)

3. Application is added to realize the application services (optional step)

4. Elements are positioned on the Layered View layout.

! Some tools support many notations such as ArchiMate® , BPMN and UML, like Sparx EA for example.

Eero Hosiaisluoma ©

36

ArchiMate® Cookbook
Patterns & Examples

The diagrams 1-4 above are just mentioned here for information. Diagrams 1 and 4 can be kept as part of the
documentation of the target application (here: Application Component X).

2.9.8.1 Use Case View - Example

Customer
(Business Actor)

Tserving

Main Use Case Online Loan

(Business Service)

‘realizing

Online Loan negotiation (Business Process)
Flow of actions Schedula
appointment

Tserving

System Use Cases Registration Receive
(System Cases) (Application applications
Service) (Application
AN AN
irealizing irealizing
Web portal]
(Application
Component)

Figure 58: Use Case View - Example.

Send application

Tserving

=
=

Contact

Tserving

Online Meeting
(Application
Service)

75

irealizing

Meeting App &]
(Application
Component)

A use case can be depicted with a layered view (figure above). The main use case can be modelled as a Business
Service, the flow of actions can be modelled with Business Process -elements, and the related system-level use
cases (a.k.a. System Cases) can be modelled with Application Service -elements.

The diagram below just illustrates how we can use add-on visual elements to point which elements are identified as
new or modified parts of the development target area (the problem domain).

Customer

Clerk %

(Business
Actor)

*—>

(Business Actor)

Tserving

Loan service
(Business Service)

AN

§realizing
Online Loan negotiation (Business Process)

Schedule = Send licati =
appointment CRCabicat o

Tserving Tserving

Contact

=

Tserving

Registration Receive Online Meeting
(Application applications (Application
Service) [(Application Service)
L A A
irealizing ~ ‘realizing irealizing
Web portal 2] Meeting App & |
(Application (Application
Component) Component)

Figure 59: Use Case View - Example 2.

Eero Hosiaisluoma ©

=

Legend

[71| New service

To be clarified

" e |

37

ArchiMate® Cookbook
Patterns & Examples

Once again we can see how the layered view can be applied to diverse modelling needs (=“use cases”).

3. ArchiMate® -Elements (subset)

Motivation & Strategy Layer(s)

Stakeholder

Business Layer

Business Service

Application Layer

Application
Service

Technology Layer

Technology
Service

Driver

Business Interface

Application -0

Interface

Technology -0

Interface

Jo)

Assessment

=>

Business Process

Application =

Process

Node

Goal

Business Function

Application Q
Function

System Software

Figure 60: Subset of ArchiMate® -elements.

Outcome

Course of Action

Business Actor

@
Business Role

Application]
Component

Device 2

Principle

Capability

Business Object

Product

Data Object

Artifact

o

Constraint

@

Resource

Business Event

Application Event

Technology Event

)

Requirement

Value

Representation

Communicatio&
Network

These ArchiMate® -elements cover the most cases (80% of diagrams can be modelled with these elements).

The subset of ArchiMate® -elements are introduced in the following tables (based on ArchiMate® specification
[1]). ArchiMate® -elements are grouped into the following categories: active structure, behavior and passive
structure. In addition, there are certain composite elements as follows: Grouping, Location and Product.

Active structure element can be regarded as a “subject”, behavior element as a “predicate” (verb”), and passive
structure element as an “object”.

Eero Hosiaisluoma ©

38

ArchiMate® Cookbook
Patterns & Examples

3.1 ArchiMate® Motivation -Elements

ArchiMate® Motivation- Elements (Motivation View) - Motivation Aspect

Name

Description

Symbol

Stakeholder

The role of an individual, team, or organization that represents
their interests in the outcome of the architecture (development
target).

Stakeholder

(ae]

Driver

An external or internal condition that motivates an organization
to define its goals and implement the changes necessary to
achieve them. Defines the WHY a change is important.

Driver

Assesment

The result of an analysis of the state of affairs of the enterprise
with respect to some driver. Can be used e.g. in SWOT-
analysis.

Assessment

Jo)

Goal

A high-level statement of intent, direction, or desired end state
for an organization and its stakeholders.

Goal

Outcome

An end-result that has been achieved. High-level, business-
oriented results produced by capabilities, tangible, possibly
quantitative.

Qutcome

Principle

A qualitative statement of intent that should be met by the
architecture.

Principle

Requirement

A statement of need that must be met by the architecture.

)

Requirement

Constraint

A factor that prevents or obstructs the realization of goals.

Constraint

o

Value

The relative worth, utility, or importance of a core element or
an outcome.

Value

Eero Hosiaisluoma ©

39

ArchiMate® Cookbook
Patterns & Examples

3.2 ArchiMate® Strategy -Elements

ArchiMate® Strategy Layer -Elements - Strategy Layer

Name Description Symbol
Course of Action An approach or plan for configuring some capabilities and
[behavior] resources of the enterprise, undertaken to achieve a goal. sl
Can be categorized as strategies and tactics
Capability An ability that an active structure element, such as an &
[behavior] organization, person, or system, possesses. coprlity
Resource An asset owned or controlled by an individual or organization. m
[structure] Can be classified into tangible assets — financial assets (e.g., Resource

cash, securities, borrowing capacity), physical assets (e.g.,
plant, equipment), intangible assets (technology; e.g., patents,
copyrights, trade secrets; reputation; e.g., brand, relationships;
culture), and human assets (skills’lknow-how, capacity for
communication and collaboration, motivation).

Value Stream Represents a sequence of value-adding activities that achieve Ty —
[behavior] a specific result that is of value to a stakeholder.

to a stakeholder. (ArchiMate® 3.1 -version).

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

3.3 ArchiMate® Business Layer -Elements

ArchiMate® Business Layer -Elements - Business Layer

Name

Description

Symbol

Business Actor
[active structure]

A business entity that is capable of performing behavior.

Business Actor

Business Role
[active structure]

The responsibility for performing specific behavior, to which an
actor can be assigned, or the part that an actor plays.

@)
Business Role

Business Service
[behavior]

An explicitly defined exposed business behavior.

Business Service

Business Interface
[active structure]

A point of access where a business service is made available
to the environment. Often referred to as a channel (telephone,
Internet, local office, etc.). The same business service may be
exposed through different interfaces.

-0
Business Interface

Business Process A sequence of business behaviors that achieves a specific =

[behavior] outcome such as a defined set of products or business LS
services.

Business Function A collection of business behavior based on a chosen set of Business [

[behavior]

criteria (typically required business resources and/or
competencies), closely aligned to an organization, but not
necessarily explicitly governed by the organization.

Function

Business Object
[passive structure]

A concept used within a particular business domain.

Business Object

Business Event
[behavior]

A business behavior element that denotes an organizational
state change. It may originate from and be resolved inside or
outside the organization.

Business Event

Eero Hosiaisluoma ©

41

ArchiMate® Cookbook
Patterns & Examples

3.4 ArchiMate® Application Layer -Elements

ArchiMate® Application Layer -Elements - Application Layer

[behavior]

component.

Name Description Symbol
Application Service An explicitly defined exposed application behavior. application
[behavior] RIS
Application Interface A pqint of access where applicat_ion _services are made Application O
[active structure] available to a user, another application component, or a node. Interface
Application Component An encapsulation of application functionality aligned to Anliation T
[active structure] implementation structure, which is modular and replaceable. It Component
encapsulates its behavior and data, exposes services, and
makes them available through interfaces.
Data Object Data structured for automated processing. A “Data entity”.
3 Data Object
[passive structure] Represents e.g. database, database table, message etc.
Application Process A sequence of application behaviors that achieves a specific Application =
[behavior] outcome. Process
Application Function Automated behavior that can be performed by an application Application W

Function

Application Event
[behavior]

An application behavior element that denotes a state change.

Application Event

Eero Hosiaisluoma ©

42

ArchiMate® Cookbook
Patterns & Examples

3.5 ArchiMate® Technology Layer -Elements

ArchiMate® Technology Layer -Elements - Technology Layer

[active structural]

or interacts with other computational or physical resources.
Active structure elements that perform technology behavior
and execute, store, and process technology objects such as
artifacts. For instance, nodes are used to model application
platforms, defined by the TOGAF framework as: “a collection
of technology components of hardware and software that
provide the services used to support applications”.

Name Description Symbol
Technology Service An explicitly defined exposed technology behavior. Technology
[behavioral] i
Node A computational or physical resource that hosts, manipulates,

Node

System Software

Software that provides or contributes to an environment for
storing, executing, and using software or data deployed within
it.

System Software

Device

A physical IT resource upon which system software and
artifacts may be stored or deployed for execution.

Device &1

Communication Network

A set of structures that connects computer systems or other
electronic devices for transmission, routing, and reception of
data or data-based communications such as voice and video.

Communicatiolgg
Network

Artifact

A piece of data that is used or produced in a software
development process, or by deployment and operation of an IT
system. It is typically used to model (software) products such
as source files, executables, scripts, database tables,
messages, documents, specifications, and model files.

Artifact

Eero Hosiaisluoma ©

43

ArchiMate® Cookbook
Patterns & Examples

4. ArchiMate® Relationships

Structural Relationships Dependency Relationships
composition —
serving
aggregation
(SR X |
access
assignment
OROR—— Y [E s
realization influence
Dynamic Relationships Other Relationships
_—
triggering specialization
_____________ >
flow association
junction

Figure 61: ArchiMate® -Relationships.

ArchiMate® relationship types are used for modelling a) structural- b) dependency c¢) dynamic and d) other
relations between the elements ([1]). Relations are introduced in the following table.

Eero Hosiaisluoma ©

44

ArchiMate® Cookbook
Patterns & Examples

ArchiMate® Relationships
Name Description Symbol
Serving Dependency relation between the elements: serving)
[dependency] an element provides its functionality to another element.
Realization Structural relation between the elements: e —
[structural] an element realizes another, more abstract element.
Assignment Structural relation between the elements: pr——
[structural] an active structural element is allocated as “doer” to another
element.
Access Dependency relation between the elements: | s N
access
[dependency] the ability of behavior and active structure elements to
observe or act upon passive structure elements.
Composition Structural relation between the elements: S——
[structural] an element consists of one or more other elements.
Aggregation Structural relation between the elements: -
aggregation
[structural] an element groups a number of other elements.
Flow Dynamic relation between the elements: B >
[dynamic] represents transfer from one element to another.
Trigger Dynamic relation between the elements: riggerng
[dynamic] a temporal or causal relationship between elements.
Association An unspecified relationship, or one that is not represented by ASsocialion
another ArchiMate® relationship - always allowed between
two elements.

Eero Hosiaisluoma ©

45

ArchiMate® Cookbook
Patterns & Examples

5. Metamodel
5.1 Metamodel - Core

Layered View - the Core Behavior And Structure [Architectural Building Blocks - HOW?

Business Layer

Date: 2019-11-14
Author: Eero Hosiaisluoma

(@] %
Business Role - @ Business Actor
assignment {external}
serving serving
Business Service & L] Business e
assignment Interface
IO (B trigger I realization ‘composition
Business Object &------srmsmsrmsmmmoromeroeeo oo Business Process = o Business Actor
access assignment {internal}
Application Layeri serving serving
Application Application =0
] - L
Service J assignment Interface
& serving
: - Application Event : P -
: realization : realization - 1 -
: triggerl : [flow I‘mmposmon
H * H
A = > —
Data Object Ko rmn e e e ApPF;LIIE:tsI:n e — Application]
access assignment Component
realization serving serving
Technology Layer:
Technology - @ Technology O
Service assignment Interface
H izati composition
Technology Event trigger : realization p
Technology = Node)
Artifact e rmn e e e Cteseas - - e
access assignment
System Software
T assignment
L
assignment
Device
Passive Structure Behavior Active Structure

Figure 62: Metamodel - Compact (with subset of ArchiMate® core elements).

Note! The behavior of a structure element (such as Business Actor, Application Component or Node) can be
modelled with Process or Function -elements on each layer. For the sake of simplicity, this figure introduces
Process -elements on each layer, namely: Business Process, Application Process and Technology Process. Thus,
Business Function, Application Function or Technology Function can be used when appropriate, accordingly.

This applies both to the core metamodel (figure above) and also to the full metamodel (figure below).

Eero Hosiaisluoma ©

46

ArchiMate® Cookbook
Patterns & Examples

5.2 Metamodel - Full

Goals View (Motivation)

: realization

realization

: realization

association

realization

Requirement

Constraint

: realization

Strategy View

: realization

serving

assignment

Resource (1)

association

;Value Stream

Layered View - the Core Behavior And Structure / Architectural Building Blocks - HOW?

| association

<

realization

Figure 63: Metamodel - Extended.

Business l;ver i

Product f——————————> Business Role] Business Actor
Ko serving | assignment {external}
aggregation — L]
Contract 1 serving serving
“\— Business Service Business ©
assignment Interface
" realization Business Event trigger l o
| 3) |
Business Object &-rserrerenressnnessnneannaanns < Business Process » Business Actor %
access | assignment {internal}
Application Layer: serving serving
icati \ e)
\ A asknment interface
N\ AN serving
Event | y £ —— N
/ riggery iflow ™) gcomposition
- =) , 2N, S
Data Object J Application g
access ‘ Process Component
B — T assignment
o realization _ _serving serving.
Technology Layer:
-0
Q""" / assignment Interface
}hnobw Event : realization composition
Artifact E assignment Node
e Ing
?ﬂggugnion
System Software
Iassignmem
Communication 1 — a
Network association pevice
Passive Structure Behavior Active Structure

Eero Hosiaisluoma ©

aggregation

Date: 2019-11-22
Author: Eero Hoslaisluoma

realization

Dellverll;le
| Bl release)

=

realization

realization

Work Package
(Project/Product)

47

ArchiMate® Cookbook
Patterns & Examples

6. Diagram Types

The most essential diagram types that tackle most (80%) of the modelling requirements are as follows:
A. The most useful diagrams:
1. Motivation View (Goals View) [2.1]
2. Layered View [2.3]
3. Interaction View (Co-operation diagram) [2.4]
a. Actor Interaction View (Actor Co-operation diagram) [2.4.1]
b. Process Interaction View (Process Co-operation diagram) [2.4.2]
c. Application Interaction View (Application Co-operation diagram) [2.4.3]
4. Conceptual Data Model View [2.6]
B. Also valuable diagrams:

5. Data Model View [2.7]

6. Technology Platform View (Infrastructure View) [2.8]
C. Additional diagrams:

7. Application Structure View [2.9]

8. Process View [2.5]

9. Business Model Canvas (BMC) [2.2.1]

10. Service Blueprint [2.3.6]

11. SIPOC [7.7]

These diagram types are introduced in this document.

Eero Hosiaisluoma ©

48

ArchiMate® Cookbook
Patterns & Examples

6.1 Basic Views

Basic Views (Diagram Types)

Name Description

1 Motivation View Analysis view of the concept incl. drivers, goals, outcomes etc.

2 Layered View An overview (the context) of the concept.

3 Conceptual Data Model View | Conceptual model of business objects and their relations at high-level.

4 Actor Interaction View Information flows between business actors (such as organizations).

5 Process Interaction View Information flows between processes (the operating model).

6 Application Interaction View Data flows between applications at high-level: the business view.

7 Application Integration View Data flows between applications at a detailed level with the application
interfaces, protocols etc. The Solution Architecture (SA) version of the
Application Interaction View.

8 Application Structure View The internal logical structure of an application, the Solution Architecture
(SA). Incl. e.g. Component Model (CM) 0-n diagrams.

9 Technology Platform View The technology platform of an application.

6.2 Business Model Views

Business Model Views (Diagram Types)

Name Description
1 Business Model Template for developing new or documenting existing business models at one
Canvas (BMC) page.
2 SIPOC Suppliers, Inputs, Process, Outputs, Customers -diagram can be used for
defining elements common to all processes. This is an easy tool for analyzing
the business case: what is the value the customer gets and how.

6.3 Customer Views

Customer Views (Diagram Types)

Name Description

1 Customer Journey A view for defining the customer path through certain business service(s).

2 Service Blueprint A layered template for analyzing elements that are related to a service path:
intra-organizational business services and -processes, applications etc.

6.4 Maps

Eero Hosiaisluoma ©

49

ArchiMate® Cookbook
Patterns & Examples

Maps (Diagram Types)

Name

Description

1 Strategic Goals

Map of strategic goals of an organization or an organization unit / domain.

2 Principles

Map of development principles of an organization or an organization unit /
domain.

3 Value Streams Map

Map of value streams of an organization or an organization unit / domain.

4 Capability Map

Map of business capabilities of an organization or an organization unit /
domain.

5 Resources

Map of resources of an organization or an organization unit / domain.

6 Business Actor Map

Map of business actors, internal and external to an organization or an
organization unit / domain.

7 Business Service Map

Map of business services of an organization or an organization unit / domain.

8 Business Process Map

Map of business processes of an organization or an organization unit /
domain.

9 Business Function Map

Map of business functions of an organization or an organization unit / domain.

10 | Business Concept Map

Map of business concepts of an organization or an organization unit / domain.

11 | Application Map

Map of applications of an organization or an organization unit / domain,
grouped by certain business relevant criteria such as business service area.

Map

12 | Application Service

Map of application services of an organization or an organization unit /
domain.

13 | Data Object Map

Map of data objects of an organization or an organization unit / domain.

14 | Technology Map

Map of technologies of an organization or an organization unit / domain.

6.5 Solution Architecture Views

Solution Architecture Views (Diagram Types)

Name

Description

1 Component Model

Decomposition of a solution into sub-components (modules, sub-systems).

2 Sequence Diagram

Information switching (method/procedure calls) between the components.

3 State Diagram

State machine: state transitions of a data object (e.g. class).

Some of the Solution Architecture (SA) level diagrams are exactly the same as on the EA level. However, these

diagrams mentioned in the table above are typical of the solution level. Diagrams 1 and 2 can be modelled with the

Application Components.

Eero Hosiaisluoma ©

50

ArchiMate® Cookbook
Patterns & Examples

7. Frameworks, Methods & Tools
7.1 Lean EA Framework (LEAF)

The Lean Enterprise Architecture Framework (LEAF) can be used for visualization of overall aspects from ideas
to production. The idea behind this LEAF is to manage end-to-end value delivery chains of any kind of
development targets, such as services. The LEAF consists of three layers as follows: 1) Management, 2) Value
Delivery Chain and 3) Operational Development - Architecture Landscape.

Organization name
& logo Management

Strategic Goals Value Streams Governance Models
| Principles | Capabilities Business Models

Value Delivery Chain

dea to Production

Development Operation

Demands Idea portfolio Development portfolio

Operational Development - Architecture Landscape

____Domaint ____J{ ___Domain2 ___J| ___Domain3 _J| __ Domain4 _J| ___ Domain5 |

Figure 64: LEAF - Level-1 (the business view).

Domain name

Motivation Views Business Views Information Views Solution Views

I
I
. Actor Cooperations
)
Stakeholder Analyses |
1

Application Views

SWOT Analyses |_Applications __|

Risk Analyses

Technology Views

Requirement Analyses Technologies Technology Services Databases Implementation Views

Figure 65: LEAF - Level-2 (the EA content view).

The LEAF supports the BizDevOps -approach, in which business- and customer-driven demand- and requirements
management is supported by architecture in the Design -phase. The Development and Operations -phases are
aligned with the DevOps -approach. The Level-1 of the LEAF-framework consists of a management framework,
business development framework, development framework and the EA content framework, which is grouped based

Eero Hosiaisluoma ©
51

ArchiMate® Cookbook
Patterns & Examples

on the organization-specific domain structure (e.g. business units, business service areas or operational value
streams). For more information see blog posts: https://www.hosiaisluoma.fi/blog/lean-ea-framework/ and
https://www.hosiaisluoma.fi/blog/sparx-ea/ (a Sparx EA reference implementation).

7.2 Lean EA Development (LEAD)

The Lean Enterprise Architecture Development (LEAD) method is an integrated development operating model.
The LEAD consists of the following aspects: 1) Value chain based Operating Model with revised EA practice and 2)
Visualization tool supported Lean EA Framework, LEAF. The architecture function is participating in the work of the
Demand Management team. This co-operation produces an architecture concept, which is then either accepted or
rejected for further development (build or buy).

st"ateg,-c Value Delivery Chain
GOals

Demands E> Development

%ee,u\ai\°“5 Y

EA increments ----> -
Architecture Landscape

Figure 66: Value Chain based operating model with integrated EA discipline.

Within the LEAD, architecture is done “just enough”. Architecture artifacts (deliverables) are created on an on-
demand basis, “just in time”, not “just in case”. All the architecture diagrams are published continuously on the EA
portal for all the concerned stakeholders of the organization. Architecture is involved in all the development cases
right from the beginning, there is no need for board committee reviews afterward. Architects provide the
Architecture Landscape, against which all the development targets are evaluated before the development phase
(build or buy). As the “idea to production” process (figure below) performs daily basis (e.g. in two-week sprints),
new architectural content is continuously added into the Architecture Landscape, which is managed within the EA
tool’s repository.

Eero Hosiaisluoma ©
52

https://www.hosiaisluoma.fi/blog/lean-ea-framework/
https://www.hosiaisluoma.fi/blog/sparx-ea/

ArchiMate® Cookbook
Patterns & Examples

Actors

Managemem% EI“S_‘O"‘EL(g “Demand %

Portfolio %

% Program %

Service %

Unit R

EA Team Proc

Board Team

(virtual) Team

Idea to PIod uction I I

Design

Board

=t

Development

=

— Operational Development

|||||

Office (PMO)

IiC:)—T

Office (SMO)

|

Operations

Service Ca(al(l)zg

Strategic Goals
Rejected Ready Management
>
L EA Development ——]
IT Operations
Customer=> =53
Business Relationshi Demand Development > C) > = Management
Demand y Manageme:l Management Portfolio Procurement
Mnagament
L = Service
= Project Mgmt & Development Management
Idea ____» Innovation
L - >
Product Development Change
Managment
» Experimental Development =
ITIL processes
Small Change >
> Other Development
A A
s ; A
! A 3 i : ;
Information v v v 7 i
Demand _<> Idea Portfolio Architecture Development Service
Landscape Portfolio Portfolio

o

Logical Service

&

Conceptual
Service

in

Realized
Service

Version: 2019-11-11
Author: Eero Hosiaisluoma

Figure 67: The LEAD process (implementation of the “Idea To Production” Value Stream).

Note! The development phase consists of several "development paths”, some of which are introduced in the
diagram above.

For more information of the LEAD see this blog post: https://www.hosiaisluoma.fi/blog/lean-enterprise-architecture-
method-for-value-chain-based-development-in-public-sector/.

The LEAD and the LEAF are introduced more detailed in the design science research article [4] (Lean Enterprise
Architecture Method for Value Chain Based Development in Public Sector, Hosiaisluoma et al., 2018.), which can
be retrieved from the Research Gate via this link:

https://www.researchgate.net/publication/328560027 Lean_Enterprise_Architecture_Method for_Value Chain_Ba
sed_Development_in_Public_Sector .

7.3 Goal-Driven Approach (GDA)

Goal-Driven Approach (GDA) supports all kinds of development, by focusing on the WHY first of all (according to
Simon Sinek’s “start with why” -concept). For every demand, it is always important to define the goals first, before
any further actions are to be taken. It is crucial to analyze “to whom”, “why” and “what” and compose a clear one-
pager of goals - for the sake of simplicity. If precise statements cannot be defined for defining drivers, goals and
outcomes, then this implies that this demand is not clear enough, and that demand doesn’t deserve to be

proceeded to detailed design or development phases.

The Goal-Driven Approach (GDA) is a simple approach to start with goals. This can be done by utilizing the
Motivation View -diagram type (introduced in this document). When the goals are clearly defined, then the demand
can move forward in the value chain of the operational development operating model.

Definition of Goals =>
([;E;]::Sds | 5l Define = Define Drive[® : Define = !)efine R Coals Viow=
Event) Stakeholders & Assesments —» Define Goals —» Oiteomies —> gnncsples, diagram
ontraints,

Figure 68: Goal-Driven Approach - start always with defining the goals (the WHY) first.

Eero Hosiaisluoma ©

53

https://www.hosiaisluoma.fi/blog/lean-enterprise-architecture-method-for-value-chain-based-development-in-public-sector/
https://www.hosiaisluoma.fi/blog/lean-enterprise-architecture-method-for-value-chain-based-development-in-public-sector/
https://www.researchgate.net/publication/328560027_Lean_Enterprise_Architecture_Method_for_Value_Chain_Based_Development_in_Public_Sector
https://www.researchgate.net/publication/328560027_Lean_Enterprise_Architecture_Method_for_Value_Chain_Based_Development_in_Public_Sector

ArchiMate® Cookbook
Patterns & Examples

7.4 Service-Driven Approach (SDA)

Holistic enterprise development can be supported by the Service-Driven Approach (SDA), which focuses on
services (instead of projects) as primary units of value creation, design, development and operations. The SDA
combines both customer-oriented (“outside-in”) and organization internal behavior- and structure-oriented (“inside-
out”) approaches. By focusing on services, enterprise development (or an IT function) can be organized as a
“production line” that produces services. The service concept is crucial, everything can be provided and consumed
as a service according to the idea where “everything as a service”.

The Service-Driven Approach (SDA) is based on layered approach, in which layers (business, application,
technology) are connected with specific kind of services as follows: 1) business services, 2) application services
and 3) technology services. All the development targets (demands) are analyzed and visualized with the services
they provide and/or require. These layers and services are based on ArchiMate® framework (figure below), which
can be used for analyzing the behavior and structure of each development target — whether it is a single service or
wider area such as a business unit.

Passive Behavior Active

Structure Structure
Business
Application

— [— ~— - Layers

Technology
Physical

L - J

T
Aspects

Figure 69: ArchiMate® Core Framework separates the elements of each layer in behavioral and structural
aspects.

A simplified service-driven pattern is illustrated in the diagram below. These are the basic elements of Service-
Driven Approach (SDA).

Customers (Business Actors) %
Tserving
Business Services ()
o
i realizing
Business Processes =
Tserving
Application Services (@)
—
grealizing
Application Components 2]
Tserving
Technology Services =)
o
grealizing
Technology Platforms (Nodes) [

Figure 70: The core elements of the Service-Driven Approach (SDA).

Eero Hosiaisluoma ©

54

ArchiMate® Cookbook
Patterns & Examples

The Service-Driven Approach (SDA) method starts from identifying the goals of the development target (the WHY)
first. Then the concerning business service is analyzed e.g. as follows: WHAT are the customer groups and
processes HOW the service is produced. In addition, WHAT are the application services, applications and
technologies that are used (figure below).

Service-Driven Approach
Define the Goals for the Change - the WHY
Trigger for Define Define Define Define Define Prlnuples
Change Stakeholders Drivers & Goals Outcomes Caontraints,
assesments Requirements

Trigger for
as-is analysi

Define the Behavior and Structure - the WHAT

Define Define Define Business
Customer(s) Business Service(s) Process(es) and./or -
Functions

¥

0 0

Define Application __)efine Application(s,
Service(s)

Y

Define Define
Technology Platform(s) &
Service(s) Technologie(s) N

Figure 71: Service-Driven Approach (SDA) method as a process.

The Service-Driven Approach (SDA) covers all the relevant aspects for analyzing and visualizing a business
service. The method goes as follows:

1.

Noakwd

8.

Identify Stakeholders, goals, outcomes, principles and requirements,

Define Customers,

Define Business service(s), to serve the customers

Define Business process(es) & functions and related business actors, to realize the business service(s),
Define Application services, to serve the processes & functions,

Define Applications, to realize the app. services,

Define Technology services (when appropriate), to serve the applications and

Define Technology platforms (system softwares, servers, comm. networks etc.), to realize tech. services.

All of these elements can all be analyzed and visualized with the following diagram types (introduced in this
document): Motivation View-, Business Model Canvas-, Layered View- and Interaction View diagrams - depending
on the case, and what is appropriate to fit for the purpose.

Eero Hosiaisluoma ©

55

ArchiMate® Cookbook
Patterns & Examples

7.5 ArchiMate® 1-2-3

Motivation Views Business Views

Application Views

Technology Views

Figure 72: ArchiMate® 1-2-3.

ArchiMate® 1-2-3 is a simple approach to utilize modelling within the architecture work. This approach is based on
the smallest possible set of ArchiMate® elements (figure below).

Goals View Behavior and Structure
Stakeholder usiness Service
| yAN
irealizing
Driver :
Business Actor % Business >
| —> Process =~ reeeeeeeeeeeeeeesd > Business Object
assignment access
Goal T)
serving
Zx Za
irealization RKlfresond Appllcgtlon
- Service
Outcome yay
irealization
2 i
irealization i g
=f Application ™ oo
Requirement Component access
Zay serving
irealization
“]
Capability Technology

Component

Figure 73: ArchiMate® 1-2-3 metamodel. The WHY and WHAT on the left, the HOW on the right.

The naming “ArchiMate® 1-2-3” stands for “one holistic wholeness, two aspects (behavior and structure), three
layers (business, application, technology)”. It is analogous to and compatible with Goal-Driven Approach (GDA)
and Service-Driven Approach (SDA), as they all are based on ArchiMate® Framework’s layers and aspects.

The ArchiMate® 1-2-3 is as easy as A-B-C, a fast track for start using modelling for visualization in all the
development cases in an organization. By starting small and keeping things simple, and then learning by doing, this
approach can be extended smoothly with other ArchiMate® elements. Modelling can be used as a supporting
method for overall development. Architecture artifacts can be created with an appropriate modelling tool, and all the
concerning documents can be produced from the tool - according to Model-Based System Engineering, MBSE (as
introduced in the SAFe). It is good practice to start small and simple, and then extend the way of working - as the
architecture- and modelling maturity evolves. ArchiMate® 1-2-3 is based on the same diagram types as introduced
in this document.

Eero Hosiaisluoma ©

56

ArchiMate® Cookbook
Patterns & Examples

7.6 EA Content Frameworks

There are three variations of how the EA content can be organized in the LEAF level-2 (introduced above) as
follows: 1) Layered Framework, 2) Aspect-Oriented Framework or 3) Views & Maps Framework. These alternative
approaches are based on the ArchiMate® Core Framework, which consists of layers and aspects (figures 1 and
65).

7.6.1 Layered Framework

Active Structure Behavior Passive Structure

. . [
:Busmess Vs | Business Services |}
I N | . | . B
1| Business Actors || Business Processes [F| Business Objects
|

Application Views

]
| |
Applications : Application Services : Data Objects Layered Views
| |
! .

Goal Views :
I
|

Technology Views

| |
: Technology platforms : Technology Services { Artifacts

| |

| I

Figure 74: Layered Framework.

This is the conventional approach to manage the EA content within a layered view (according to ArchiMate® Core
Framework). Elements on the layers are positioned according to ArchiMate® aspects as verticals. Note! These
content placeholders (white boxes) can be named according to what is appropriate.

7.6.2 Aspect-Oriented Framework

Behavior

Business Services

Goal Views Layered Views

Figure 75: Aspect-Oriented Framework.

This is the aspect-oriented approach to manage the EA content within a view with no layers (according to
ArchiMate® Core Framework).

7.6.3 Views & Maps Framework

Actor Interactions
Conceptual Data Models

Process Interactions Layered
Application Integrations|l{ Views

Active Structure Behavior
Business Services
Actors i

Goals

Application Structures

I
1
|
I
1
: Applications Application Services
|
I
}
Technology platforms !

Figure 76: Views & Maps Framework.

Eero Hosiaisluoma ©
57

ArchiMate® Cookbook
Patterns & Examples

This is a “use case oriented” view to manage the EA content. This is a combination of a) typical diagrams grouped
into the Views, and b) collection of maps of fundamental EA structural and behavioral elements. The maps are
positioned according to ArchiMate® aspects (active structure, behavior and passive structure).

Note! These frameworks are examples, all the content placeholders (white boxes) can be identified and named to
what is appropriate; content placeholders can be added, modified, removed or replaced to according to what is
essential in the organization. It is important to notice that these maps are collections (catalogs) of relevant
elements in the enterprise architecture of an organization.

When customizing these content frameworks introduced here, the rule of thumb is to keep it simple. Good practice
is to apply the Lean EA principles: use only the relevant content placeholders (‘just enough”); create content
placeholders only if needed (“just in time”) — not to create them “just in case”. However, content placeholders can
act as reminders of what should be investigated and modeled. (A specific step-by-step method is to be introduced
here.)

7.7 SIPOC (Suppliers, Inputs, Process, Outputs, Customers)

Six Sigma tool called SIPOC (Suppliers, Inputs, Process, Outputs, Customers) can be used for defining elements
common to all processes. This is an easy tool for analyzing the business case: what is the value the customer gets
and how.

Supplier Input Process Output Customer

Step 1
(Business Process)

v
% = %

" . e S I IR Step2 | |, i " R
Business Actor 2> Business Object > (Business Process) > Business Object > Business Actor

v
R = R

" . e S [W Step 3 : o] . "
Business Actor 2> Business Object > (Business Process) > Business Object > Business Actor

v
R =] 5

Business Actor —» Business Event —p Per=-» Business Object I Business Actor

. . . Step 4 . ’ .
Business Actor > Business Object > (Business Process) > Business Object > Business Actor
The providers of inputs to the Information, materials, The steps to perform the The deliverable(s) (e.g. The actor/role that gain
process steps resources required to inputs into outputs, product or service, report) to benefits from the process
perform the process providing value to be produced/delivered from
Version: 0.1 customers/stakeholders. the process steps to the
Date: 2020-05-02 i
A:l:or Eero HDSII\S‘UB"’IS Internal or exterl’l&|
customers.

Figure 77: SIPOC diagram.

Eero Hosiaisluoma ©

58

ArchiMate® Cookbook
Patterns & Examples

8. Appendixes
8.1 Appendix 1: Cloud Service Models

laaS Paas SaaS BPaa$
Sourcing
Business Service Business Service Business Service Business Service
I & o 2
= = = =
Business Process Business Process Business Process Business Process
T T Sourcing T T
Application Application Application Application
Service Service Service Service
& P 2 &
Application Application Application Application
Component Component Component Component
T Sourcing T T T
Platform Service Platform Service Platform Service Platform Service
A = A A
Platform Platform Platform Platform
Sourcing T T T T
Infrastructure Infrastructure Infrastructure Infrastructure
Service Service Service Service
& & & &
Infrastructure Infrastructure Infrastructure Infrastructure

Figure 78: Cloud Service Models.

8.2 Appendix 2: Modelling Tips & Tricks + Extra Patterns

Some miscellaneous tips and tricks for fine-tuning diagrams.

8.2.1 Line Width And Color

Application Bl e > Application £]
Component A e — - Component B
Data Object B-1

B Application]
Data Object A-1 Component C

Figure 79: Line width and color.

It is possible to add extra information (meaning, semantics) to relationship types such as Flow. For example, line
width can implicate e.g. volume of the integration. Line color can implicate e.g. importance, or interaction type such
as automatic, semi-automatic, manual integration, or integration mechanism such as FTP-transfer, batch,
messaging, service call (Remote Procedure Call, RPC), synchronous/asynchronous etc.

Eero Hosiaisluoma ©

59

ArchiMate® Cookbook
Patterns & Examples

8.2.2 Legend

Business Area A Business Area B
Legend

Application £] Application £] Application g] -
Component A Component B Component C =
To be clarified

Application £l Application £] Application g] D
Component E Component F r Component D

Figure 80: Legend for extra information.

Using descriptions for add-on information in the form of a legend in diagrams, it is possible to add any kind of extra
meaning to diagram elements. For example, to illustrate life-cycle indicators.

It is worth noticing, that there are established practices for using colors with ArchiMate® as follows: a) yellow for
the business layer, b) light blue (turquoise) for the application layer and c) light green for the technology layer.
Hence it is not suggested to use custom colors with elements, even though modelling tools allow this, as colors
have these “built-in” meanings already.

8.2.3 Grouping

The Grouping -element can be used for modelling logical groups of elements that can be handled as an entity. E.g.
application groups such as financial applications, external applications, legacy applications etc. In addition, the
grouping can be used for abstracting a group of elements. For example, if we don’t know yet enough details, or we
are not interested in the details of a specific area, we can model such a target area as a group. For example, we
just like to handle external organization’s applications as a group, or certain applications as a group (see figure
below).

Application Group A

———————————— »> _—
Application 2] Data Object A-1 Application Al
ComponentA | o __ _________| Component X
Data Object X-1
Application & -
ComponentB | o _______ > Application
Data Object A-1 Component Y
Application & |
Component C ____________ Appllca[ion E
Data Object A-1 Component Z

Figure 81: Grouping -element used for abstracting.

The value of using grouping is that we can use relationships with the group. E.g. information flow can be modelled

against the group instead of distinct applications (figure above), if the integrations are similar.

According to ArchiMate® -specification:

e “The grouping element aggregates or composes concepts that belong together based on some common
characteristic.”

e “One useful way of employing grouping is for modeling Architecture and Solution Building Blocks (ABBs and
SBBs), as described in the TOGAF framework.”

¢ “Another useful application of grouping is for modeling domains.”

8.2.4 Abstracting Elements

ArchiMate® has an elegant built-in abstraction mechanism, which enables to utilize certain concepts for diverse
abstraction levels (and levels of details). Hence, e.g. the Data Object can be used for modelling for example a
logical database, a database table, message structure (switched between applications) etc. In addition, the
Application Component can be used for modelling a single application, its sub-components (modules), or a whole

Eero Hosiaisluoma ©

60

ArchiMate® Cookbook
Patterns & Examples

group of applications e.g. of an organization unit. A class of applications can be modelled as an abstract application
(e.g. named according to following notation: << Application >>), which represents e.g. an application that is not
known, cannot be identified by name etc. These abstractions can be made visible with specialization.

An abstraction represents:

e a‘"class" of objects / elements
o there can be several instances of this class
o none of the individual instances, but them all as a whole is relevant and meaningful
o all the instances inherit similar behavior (relative to the context in hand)
o Instance naming (according to UML): “Instance name : Class”
e a"role" which certain objects can play
o models an element of a specific kind, that is identified, but not necessary to be known by the name
o only the behavior of an object is known or important to be known
o e.g.abusiness actor is meaningful to be specified, but its application is not, only the behavior it
plays
e acollection of objects of the same type
o models a set of objects as a whole, group of elements
o e.g. << Financial applications >>, << Front-end applications >> (Note! Naming: plural)
e generalization / specialization
o models the generic element (stereo)type, not any specific element
there can be specializations of this generalization
e.g. << Financial application >> and “Purchasing Application” (Note! Naming: singular)
elements can be typed with the specialization prefix, e.g. “<< |T-service >> Name”
Module or sub-system e.g. “Module Name [Application Name]”

o O O O

Notation:
e naming as follows: abstraction << Application(s) >> (with or without “<<” and “>> prefix and suffix)
¢ talic font can be used in naming, indicating that the concerning element is an “abstraction”

£]]]

<<Application>> : : s
PP << Production unit applications

<<Financial applications>> o

«Application» @
Name

]]

«Database» =] << Front-end applications >> << External applications >>
Name

Figure 82: Abstracting applications.

All'in all, the most typical usage scenario is to abstract active structure elements into a collection of the same type.
E.g.

e Business Actor “Customers” for representing all the categories of customers, not specifying them
individually by name
e Application Component “Financial applications” for representing all the applications relating to cash flow
8.2.5 Enterprise Application Integration (EAI) patterns

These patterns apply to modelling enterprise application integration (EAI) solutions that implement various EAI
patterns.

8.2.5.1 Enterprise Service Bus (ESB)

An ESB platform can be modelled as shown in the figure below. An ESB provides a pattern (platform) for switching
data between applications.

Eero Hosiaisluoma ©

61

ArchiMate® Cookbook
Patterns & Examples

BizAppA & |

A
1. request:

|
I
I4. response {l

I
I

I

I

1

EAIl platform (Application Component) i
Integration

Configuration A-B
(Application Function)

I A
:2. request:
: :3. response
\ 4 1
BizAppB £

Figure 83: ESB pattern (this example uses the Application Function to represent the integration
configuration).

An ESB contains configurations per each integration. These configurations can be modelled e.g. as 1) Application
Components, 2) Application Functions or 3) Application Processes. An Application Component represents a
deployable, independent execution entity, whereas an Application Function and an Application Process represent
the behavior, that can be performed by a) EAI platform itself or b) a sub-component of an EAI platform. Anyhow,
the integration configuration shall be specifically modelled, so that the whole end2end flow of an individual
integration can be handled as a single unit (of work): logically and physically independent and coherent
encapsulation of functionality.

8.2.6 Information Resource

An information/data resource can be e.g. a database, databank, data store, register/registry, information/data pool
etc., which is a logically meaningful entity in the enterprise architecture of an organization. Such an information
resource is a structural element, which can be either a) active structure or b) passive structure. The former is an
active doer (“actor”), which can provide (application) services via the (application) interfaces and can be involved in
data switching between other active structure elements, and can perform behavior such as data processing
(extracting, enriching etc.). The latter is a passive element that represents only data in different abstraction levels
(e.g. database, data structure, message etc.).

There are few alternative ways to model an information resource that contains data, and may or may not include
data processing behavior. The options are as follows:

1. Grouping composite elements can be used for modelling databases (or any kinds of data storages) into a
logical group, which can be handled as a single entity in the enterprise architecture

2. Data Object -element can be used for modelling an entity that is composed of data only. This is a passive
structure element, which is not associated with behavior — only data

3. Application Component -element represents an active structure that can contain data, behavior (such as
data processing) and it can expose services (via interfaces) to external applications etc. An application
component can contain sub-components, each of which can contain the behavior of its own. As such the
application component is a very multipurpose element, which can be used for abstracting many kinds of
concepts and entities of the enterprise architecture of an organization. Note! The type of the component
can be expressed with the specialization mechanism of ArchiMate® , e.g. introducing the specialization
type such as “<<Data store>>" in the label of the component as shown in the diagram below (option 3).

Eero Hosiaisluoma ©

62

ArchiMate® Cookbook
Patterns & Examples

Option 1. Grouping Option 2: Data Object
Information resource X Information
resource X
(Data Object)
Database A Database B Database C)
(Data Object) (Data Object) (Data Object) | [aggregatlon |
Database A Database B Database C
(Data Object) (Data Object) (Data Object)

Option 3: Application Component

«Data store»
Information resource X

(Application Component)

Eaccess (n Eaccess w) Eaccess (r/w)
: v v
Database A Database B Database C
(Data Object) (Data Object) (Data Object)

Figure 84: Information resource options.

8.2.7 API (Application Programming Interface)

The organization may have a number of APIs available, that are exposed and made available with a specialized
platform (such as an API Gateway). An individual API can be modelled with the Application Interface -element, as
the API represents an “externally exposed behavior of an application”.

The API can be introduced by using the ArchiMate® specialization mechanisms, e.g. by using a stereotype as
extra information associated with the API. The API is an application interface by nature, but the <<stereotype>>
makes the specialized purpose visible as shown below. The <<stereotype>> indicates what is type of an
application interface: e.g. <<API>> or <<GUI>>,

<<API>> O
Name

Figure 85: APl modelled with the Application Interface -element, by using a <<stereotype>>.

Eero Hosiaisluoma ©

63

ArchiMate® Cookbook
Patterns & Examples

8.2.8 Layered Process View

Actors

Goup R dam ¥

Customer Service Handling
[Business Actor] [Business Actor]

assignment assignment
Process

«Manual Process» =
Step 4
[Business Process] rigér

«Manual Process» & o~ «Manual Process» & «Manual Process» =
Step 1 >\J > Step 2 — Step 3
998" [Business Process) [Business Process] trigger [Business Process)

BuslnesAs Event » » BusmesBs Event
v

trigger

«Batch Process» = «Batch Process» = «Batch Process» =

Batch A — Batch B Batch C trigger
[Application Process) triggen [A Process] [Application Process]
trigger
Applications I I
serving assignment assignment assignment
b
«System» g «System» {] «System» g

o
Application Service -— Application A Application B Application C
[Application Service] assianmeRbplication Co] (A G [Application Component]

Figure 86: Layered Process View.

This is a version of the Layered View for defining a (business) process that consists of with both manual and
automated steps. The process flow (behavior) is modelled on the middle “layer”, and the performers (actors and
applications) are modelled on both sides of the process. The business actors are placed on the top layer, and the
applications are positioned on the bottom layer.

8.2.9 Anatomy of a Business Capability

A capability is cohesive composition of elements. A capability encapsulates all the elements that are logically
belonging together. A capability is a composition of elements that have something in common, something that are
to be managed and developed together as a single, autonomous unit.

Figure 87: Anatomy of a Capability.
Business
Proc

A capability defines what organization is doing, or what
organization is going to do. As such, a capability is a behavioral
unit in the first place — not structural. All the capabilities together
define what an organization needs to have so that it can execute
its business model.

It is a good practice to keep the EA repository coherent and avoid
adding too much complexity. According to the principle of “keeping
things as simple as possible”, we can use the core AM elements
(such as business actors, application components and data
objects) and connect those into a capability — without introducing
resource -elements. The resource -element is an abstraction that
can be used when planning a capability. But when we are
modelling existing capabilities for development purposes, we can
include concrete operating level elements into a capability, such
as: Business Services and Products, Business Processes and -Functions, Business Actors and -Roles (to
represent skills and competencies), Business Objects and Data Objects, Application Services and -Interfaces,
Application Components etc. More implementation-specific elements such as devices and technologies (System
Softwares) can be left to other diagrams rather than introduced in capability decomposition diagrams.

A capability can be modelled within the EA-modelling tool with ArchiMate® by utilizing the Business Capability
Canvas (BCC), as shown below. This canvas can be used for detailed descriptions of each capability of an
organization. By this way, we can develop capabilities with a consistent pattern in a similar way. This makes the
overall development of an organization easier to understand and manage.

Business
Actors

Business
Services

Application

Servi Data Objects
ervices

Applications

Eero Hosiaisluoma ©

64

ArchiMate® Cookbook
Patterns & Examples

Business Capability ﬂ
Business Services & Products & Channels Business Actors & -Roles
(@]

Business Service A-1 Business Service A-2 Business Actor A Business Actor B Business Role R
Business Processes & -Functions Data

Business Process A-1 Business Process A-2 Business Function F-1 Business Object B-1 Data Object A-1 Data Object A-2
IT-& Application Services & -Interfaces

Application Service 1 Application Service 2 Application Service 3

Applications

£] £] £]

Application Component 1 Application Component 2 Application Component 3

Figure 88: Capability decomposition -template, the Business Capability Canvas (BCC).

A capability defines the behavior, what is performed by resources. For the sake of simplicity, a capability can be
modelled as shown in the figure above: all the relevant elements can be included in the capability element.
However, some elements are pure resources as shown in the figure below.

Behavior Structure
Business Service =~ f-reneseseseseseses D q ---------------------- Business Interface
realization realization
Business Process =~ rrerereseseseseeees D q ---------------------- Business Object
realization realization
Business Function =~ reesesceseeseseeee [> 4 ---------------------- Business Actor
realization realization
e A Application Interface
Application Service ~ F------- e s et D q ------- pp(APl / GUI)
realization realization

= £]

Application Process ~ reres-eseseeseneees D Capability - P Resource q—-------e-a-l-_-;(-_; ------ Application Component
assignment realization

A

Application Function r===-==--seseemenes D q ---------------------- Data Object
realization realization

o

q ---------------------- System Software
realization

q """""""""""""""" A Device g

realization

P (T Fcity [

realization

Figure 89: Capability and resources.

Eero Hosiaisluoma ©

ArchiMate® Cookbook
Patterns & Examples

8.2.10 Capability-Based Development of an Organization

Business capabilities are the central components of a business. They represent the DNA of a business, as
business capabilities are the basic building blocks of an organization. Capabilities are the properties of an
organization. As such, capabilities are the basic units of organization development, not solely units of planning.

The easiest way to understand what is needed for the business of an organization, is to identify the business
capabilities. A business capability encapsulates all the elements that are related and required, so that the business
capability is cohesive, coherent, autonomous, and viable enough. These related elements all together compose the
capability, and they can be developed as an autonomous business component. Business capabilities have
interactions with each other, via their internal elements, such as applications, in the form of data flows.

When developing capabilities, all the capability increments (within certain transition architectures), can be defined
at a detailed level. Here is an example of a capability increment roadmap view.

Capability A d':g
JAN ZAN JAN

Capability increment /
Transition 2 (2023/Q1)

Capability increment /| =

Capability increment / =
Transition 3 (2023/Q2)

Transition 1 (2022/Q4)

hocessh aua1 O ag-1 O App Service B-1 App Service C-1 App Service D-1
Bus’ness Brocess) (Application Interface) (Application Interface) (Application Service) (Application Service) (Application Service)
‘ i — ZA ZAN —> AN
Application B {] Q Application D @

Application A {I

(Application Component)

Application B E
(Application Component)

(Application Component)

Application Function C-1

Application Component C

(Application Component)

AN AN JAN
Release 1 Release 2 Release 3
(Deliverable) (Deliverable) (Deliverable)
VAN L 4y
Program A
(Work Package) H i i
Phase 1 Phase 2

(Work Package) (Work Package)

Figure 90: Capability Increment Roadmap View.

Capability increments are defined as plateaus, each of which contains those elements that are to be modified and
implemented and released in the specific program / project phases.

Eero Hosiaisluoma ©

66

	1. Introduction
	1.1 Purpose And Scope
	1.2 References

	2. ArchiMate® Diagram Types
	2.1 Motivation View (Goals View)
	2.1.1 Motivation View - Example
	2.1.2 Risk Analysis View

	2.2 Business Model View
	2.2.1 Business Model Canvas (BMC)
	2.2.2 SWOT Analysis View
	2.2.3 Value Stream View
	2.2.3.1 Value Stream - Example

	2.2.4 Strategy & Capability View
	2.2.4.1 Capability Map View
	2.2.4.2 Strategy & Capability Planning View
	2.2.4.3 Strategy To Capability View
	2.2.4.4 Capability Planning View

	2.2.5 Implementation Roadmap View

	2.3 Layered View
	2.3.1 Layered View - Business- and Application Layers Example
	2.3.2 Layered View - Business Layer
	2.3.3 Layered View - Customer Service Journey
	2.3.3.1 Layered View - Customer Journey View - Example

	2.3.4 Layered View - Swimline Process View
	2.3.5 Layered View - Service Design View
	2.3.6 Layered View - Service Blueprint

	2.4 Interaction View (Co-operation View)
	2.4.1 Actor Interaction (Co-operation) View
	2.4.2 Process Interaction (Co-operation) View
	2.4.3 Application Interaction (Co-operation) View

	2.5 Business Process View
	2.5.1 Business Process Functional Decomposition View

	2.6 Conceptual Data Model View
	2.7 Data Model View
	2.8 Technology Platform View (Infrastructure View)
	2.9 Application Structure View (Solution Architecture View)
	2.9.1 Application Design Pattern (Basic Model)
	2.9.2 Application Logical Structure View (Application Structure / Internal Structure)
	2.9.3 Component Model (CM)
	2.9.3.1 Component Model - 0 (CM-0)
	2.9.3.2 Component Model - 1 (CM-1)
	2.9.3.3 Component Model - 2 (CM-2)

	2.9.4 Database
	2.9.5 Application Integrations
	2.9.5.1 Application Interface and Synchronic Request-Reply Design Pattern
	2.9.5.2 ETL-Process

	2.9.6 Sequence Diagrams
	2.9.6.1 Application Component Sequence Diagram View
	2.9.6.2 Application Component Sequence Diagram View 2

	2.9.7 Application Integration Patterns
	2.9.8 Use Case View
	2.9.8.1 Use Case View - Example

	3. ArchiMate® -Elements (subset)
	3.1 ArchiMate® Motivation -Elements
	3.2 ArchiMate® Strategy -Elements
	3.3 ArchiMate® Business Layer -Elements
	3.4 ArchiMate® Application Layer -Elements
	3.5 ArchiMate® Technology Layer -Elements

	4. ArchiMate® Relationships
	5. Metamodel
	5.1 Metamodel - Core
	5.2 Metamodel - Full

	6. Diagram Types
	6.1 Basic Views
	6.2 Business Model Views
	6.3 Customer Views
	6.4 Maps
	6.5 Solution Architecture Views

	7. Frameworks, Methods & Tools
	7.1 Lean EA Framework (LEAF)
	7.2 Lean EA Development (LEAD)
	7.3 Goal-Driven Approach (GDA)
	7.4 Service-Driven Approach (SDA)
	7.5 ArchiMate® 1-2-3
	7.6 EA Content Frameworks
	7.6.1 Layered Framework
	7.6.2 Aspect-Oriented Framework
	7.6.3 Views & Maps Framework

	7.7 SIPOC (Suppliers, Inputs, Process, Outputs, Customers)

	8. Appendixes
	8.1 Appendix 1: Cloud Service Models
	8.2 Appendix 2: Modelling Tips & Tricks + Extra Patterns
	8.2.1 Line Width And Color
	8.2.2 Legend
	8.2.3 Grouping
	8.2.4 Abstracting Elements
	8.2.5 Enterprise Application Integration (EAI) patterns
	8.2.5.1 Enterprise Service Bus (ESB)

	8.2.6 Information Resource
	8.2.7 API (Application Programming Interface)
	8.2.8 Layered Process View
	8.2.9 Anatomy of a Business Capability
	8.2.10 Capability-Based Development of an Organization

